
Introduction to Communicating
Sequential Process (CSP)

(Lecture 13)

Mannheim, September 2007

Contents

• Introduction to JCSP (CSP for Java)

Introduction

• The implementation of a CSP specification
can be done using other environments
– UML-RT
– CTJ (libray similar to JCSP)
– occam (language that implements CSP)
– ...

• We will see a brief overview of JCSP

JCSP: General Issues
• Java library that implements the communication and

concurrency model of CSP/occam (with restrictions)
• Gives support to the development of process-oriented

projects.
• Implementation is based on the threads/monitor Java

mechanism.
• Versions

– Base Edition
– Network Edition (provides support to distribution)

JCSP: General Issues
• CSP features available

– Prefix
– Channels
– Comunication (including buffers)
– Sequential Composition
– Parallelism (but not the alphabetized)
– External Choice (with restrictions and extensions)

• CSP features not available
– Hiding, relabelling, alphabetized parallel

composition, internal choice, index, ...

JCSP Process
• A process is an autonomous entity (the

execution flow is independent)
• Encapsulates states(attributes) and methods

– Constructors are public
• Communicates with the environment through

channels (as in CSP)
• Active behaviour (flow) implemented by

method run() (public)

JCSP Process

A process is an object of a class that
implements a interface CSProcess

interface CSProcess {
public void run();

}

• Every class that implements CSProcess
must provide an implementation of
run()

... private support methods (part of a run)

... public void run() (process starts here)

Process Structure
class Example implements CSProcess {

}

... private shared synchronisation objects
(channels etc.)

... private state information

... public constructors

... public accessors(gets)/mutators(sets)
(only to be used when not running)

JCSP Channels
• A channel is an object of a class that

implements:

interface Channel {
}
interface Channel {
}

JCSP Channels
• There are four types of interfaces:

– ChannelInput
– ChannelOutput
– ChannelInputInt
– ChannelOutputInt

JCSP Channels
• A channel holds a data of some type.
• Channels can either send data to a process

(output channels), or receive data from a process
(input channels)

Processes and channels
• When a process dispatch an event through a

channel, it stays blocked until the synchronisation
with another process occurs.

class P implements CSProcess{
ChannelOutput a;
public void run() {
a.write(...);
}
}

class P implements CSProcess{
ChannelOutput a;
public void run() {
a.write(...);
}
}

class Q implements CSProcess{
ChannelInput a;
public void run() {
x = a.read();
}
}

class Q implements CSProcess{
ChannelInput a;
public void run() {
x = a.read();
}
}

interface ChannelOutput {
public void write (Object o);

}

interface ChannelInput {
public Object read ();

}

interface ChannelOutputInt {
public void write (int o);

}

interface ChannelInputInt {
public int read ();

}

Interfaces for integer channels
and objects

JCSP Channels
• An input and output channel may be of type:

– One2OneChannel
– Any2OneChannel
– One2AnyChannel
– Any2AnyChannel

• The two first types can be used inside ALT
constructs.

One2OneChannelOne2OneChannel

JCSP Channels

• One to one object channel. Allows only one writer
and one reader.

Any2OneChannelAny2OneChannel

JCSP Channels
• Any2OneChannel. Allows many writers and one
reader.

One2AnyChannelOne2AnyChannel

JCSP Channels

• One2AnyChannel. Allows one writer and many
readers.

Any2AnyChannelAny2AnyChannel

JCSP Channels

• Any2AnyChannel. Allows many writers and many
readers.

• By default, channels are fully synchronised. At a given
time only one reader and only one writer can use the
channel.

• JCSP ofers a set of plugins of channels that provides
several buffering mechanisms.
(FIFO blocking, overflowing, overwriting, infinite)

• These plugins can be find in jcsp.util.

Channels of objects

public SuccInt (ChannelInputInt in,
ChannelOutputInt out) {

this.in = in;
this.out = out;

}

public void run () {
while (true) {
int n = in.read ();
out.write (n + 1);

}
}

private final ChannelInputInt in;
private final ChannelOutputInt out;

class SuccInt implements CSProcess {

}

SuccIntSuccIntin outExample

public PlusInt (ChannelInputInt in0,
ChannelInputInt in1,
ChannelOutputInt out) {

this.in0 = in0;
this.in1 = in1;
this.out = out;

}

... public void run ()

private final ChannelInputInt in0;
private final ChannelInputInt in1;
private final ChannelOutputInt out;

class PlusInt implements CSProcess {

}

in1

outin0
++

Example

sequentialsequentialsequential

... public PlusInt (ChannelInputInt in0, ...)

public void run () {
while (true) {
int n0 = in0.read ();
int n1 = in1.read ();
out.write (n0 + n1);

}
}

... private final channels (in0, in1, out)

class PlusInt implements CSProcess {

}

in1

outin0
++

Example

Process Networks

• Process instances (components) may be
combined to form a network.

• The resulting network is also a process.
• Components are connected through

conectors (channel instances)
• The components execute in parallel.

The class Parallel

• Parallel is a CSProcess whose constructor has
as argument an array of processes.

• The method run() implements the parallel
composition of the argument processes.

• The semantics is the same as the interaction
operator in CSP (||).

• The method run() finishes only when all
arguments finish sucessfully.

public void run () {

}

in1

outin0
++

while (true) {
parRead.run ();
out.write (readIn0.value + readIn1.value);

}

ProcessReadInt readIn0 = new ProcessReadInt (in0);
ProcessReadInt readIn1 = new ProcessReadInt (in1);

CSProcess parRead =
new Parallel (new CSProcess[] {readIn0, readIn1});

processes for processes for
reading the input reading the input
in parallelin parallel

Example

The Class Parallel

• Ofers methods for adding (addProcess)
and removing processes
(removeProcess)

• However, these methods should be called
only when the object is not running.

• If called during the execution, the effect
occurs only after the ending of the
execution.

Exercise
• Gives a JCSP implementation of the CSP process

Main below

Main = Send (0) || Read
Send (i) = chan ! i -> Send (i+1)
Read = chan ? x -> Print(x); Read
Print(x) = ...

public class Send implements CSProcess {
private final ChannelOutputInt chan;
private int i;

public Send(ChannelOutputInt chan, int i) {
this.chan = chan;
this.i = i;

}

public void run() {
while (true) {

chan.write(i);
i = i + 1;

}
}

}

Process Send

public class Read implements CSProcess {
private final ChannelInputInt chan;

public Read(ChannelInputInt chan) {
this.chan = chan;

}

public void run() {
while (true) {

int i = chan.read();
System.out.println(i);

}
}

}

Process Read

public class ExampleMain {
public static void main (String[] args) {

One2OneChannelInt chan =
new One2OneChannelInt();

Send send = new Send(chan);
Read read = new Read (chan);
CSProcess[] parArray = {send,read};
Parallel par = new Parallel (parArray);
par.run();

}
}

Process Main

public class ExampleMain {
public static void main (String[] argv) {

One2OneChannelInt chan1 =
new One2OneChannelInt ();

One2OneChannelInt chan2 =
new One2OneChannelInt ();

new Parallel (new CSProcess[] {
new Send (chan1),
new IdentityInt(chan1, chan2),
new Read (chan2)}).run ();

}
}

Exercício 2 – Comunicação Assíncrona

Send Identity Read
chan1 chan2

Sequential Composition
• class Sequence (implements CSProcess)

– CSProcess whose constructor has an
array of processes as argument.

– The method run() implements a
sequential composition of the processes
in the argument.

Alternative

– Implements (external) choice
– Example:

ChannelInput ch1, ch2 = ...
Guard[] guards = new Guard[] {ch1, ch2};
boolean[] preconditions = new boolean[] {g1, g2};

Alternative alt = new Alternative(guards);
int indexGuard = alt.select(preconditions);

ChannelInput ch1, ch2 = ...
Guard[] guards = new Guard[] {ch1, ch2};
boolean[] preconditions = new boolean[] {g1, g2};

Alternative alt = new Alternative(guards);
int indexGuard = alt.select(preconditions);

Selection algorithm

Channel Mapping

• One2OneChannel a = P(a) [|a|] Q(a)

• One2AnyChannel a = P(a) [|a|] (Q1(a) ||| Q2(a))

• Any2OneChannel a = (P1(a) ||| P2(a)) [|a|] Q(a)

• Any2AnyChannel a = (P1(a) ||| P2(a)) [|a|]
(Q1(a) ||| Q2(a))

The communication is always point to point,
because only two processes communicate at each
time.

Processes Mapping
• What do we have in CSP?

1. P = pre & a -> P
2. P = a?x:{restricao} -> P
3. P = a!x?y -> P
4. P = (a -> P) [] (b -> P)
5. P = (a -> P) |~| (b -> P)
6. P = a -> Q
7. P = (a -> Q) [] (b -> R)
8. P = Q ||| R
9. P = Q || R
10. P = Q |a| R
11.

JCSP does not
support all CSP
constructions!

We will present
some of them.

Processes Mapping
P = pre & a -> P

P implements CSProcess {
AltingChannelInput a;
public void run() {

boolean pre = ...
Guard[] guards = new Guard[]{a};
bollean[] preconditions = new boolean[] {pre};
Alternative alt = new Alternative(guards);

while (true) {
switch (alt.select(preconditions))
case 0:

a.read();
break;

}
}

}

P implements CSProcess {
AltingChannelInput a;
public void run() {

boolean pre = ...
Guard[] guards = new Guard[]{a};
bollean[] preconditions = new boolean[] {pre};
Alternative alt = new Alternative(guards);

while (true) {
switch (alt.select(preconditions))
case 0:

a.read();
break;

}
}

}

Processes Mapping

P = a?x!y -> P

There are several forms for implementing channels of
several data.

Processes Mapping
P = a?x!y -> P
P = a?x!y -> ... // a channel for each data
Q = a!x?y -> ...

P { AltingChannelInput ax;
ChannelOutput ay;
...
DataX valueX = (DataX)ax.read();
ay.write(valueY);
...

}
Q { ChannelOutput ax;

AltingChannelInput ay;
...
ax.write(valueX);
DataY valueY = (DataY)ay.read();
...

}

P = a?x!y -> ... // a channel for each data
Q = a!x?y -> ...

P { AltingChannelInput ax;
ChannelOutput ay;
...
DataX valueX = (DataX)ax.read();
ay.write(valueY);
...

}
Q { ChannelOutput ax;

AltingChannelInput ay;
...
ax.write(valueX);
DataY valueY = (DataY)ay.read();
...

}

Processes Mapping
P = a!x?y -> P

P = a!x?y -> ... // an input (output) channel
Q = a?x!y -> ... // for a composite type

P {
ChannelOutput a;
...
a.write(valueXY);
...

}

Q {
AltingChannelInput a;
...
DataXY valueXY = (DataXY)a.read();
...

}

P = a!x?y -> ... // an input (output) channel
Q = a?x!y -> ... // for a composite type

P {
ChannelOutput a;
...
a.write(valueXY);
...

}

Q {
AltingChannelInput a;
...
DataXY valueXY = (DataXY)a.read();
...

}

The values of x and y must
be known

Processes Mapping

P = (a -> P) [] (b -> P)

The input channels are directly used as guards
Output channels cannot be used as guards.

– option 1: create a new input channel to
precede the output channel
b!out -> user -> b!out -> ...

– option 2: use a timeout before the output
channel

Processes Mapping
P = (a?x -> P) [] (b!y -> P)
P implements CSProcess {

AltingChannelInput a, user;
OutputChannel b;
public void run() {

Guard[] guards = new Guard[]{a, user};
Alternative alt = new Alternative(guards);

while (true) {
switch (alt.select())
case 0: a.read();

break;
case 1: user.read();

b.write(..);
break;

}
}

}

P implements CSProcess {
AltingChannelInput a, user;
OutputChannel b;
public void run() {

Guard[] guards = new Guard[]{a, user};
Alternative alt = new Alternative(guards);

while (true) {
switch (alt.select())
case 0: a.read();

break;
case 1: user.read();

b.write(..);
break;

}
}

}

Processes Mapping

P = (a -> P) |~| (b -> P)

Notion not very clear
Non determinism may be implementes through the
selection method of Alternatives
select() – selecs arbitrarily from the list of active guards
priSelect() – selects the first guard from the list of active
guards
fairSelect() – selects the less active visited guard

Processes Mapping
P = a -> Q

P implements CSProcess {
ChannelInput a;
public void run() {

a.read();
new Q().run();

}
}

P implements CSProcess {
ChannelInput a;
public void run() {

a.read();
new Q().run();

}
}

Processes Mapping
P = (a -> Q) [] (b -> R)
P implements CSProcess {

AltingChannelInput a, b;
public void run() {

Guard[] guards = new Guard[]{a, b};
Alternative alt = new Alternative(guards);
while (true) {

switch (alt.select())
case 0: a.read();

new Q().run();
break;

case 1: b.read();
new R().run();
break;

}
}

}

P implements CSProcess {
AltingChannelInput a, b;
public void run() {

Guard[] guards = new Guard[]{a, b};
Alternative alt = new Alternative(guards);
while (true) {

switch (alt.select())
case 0: a.read();

new Q().run();
break;

case 1: b.read();
new R().run();
break;

}
}

}

Processes Mapping
P = Q ||| Q

Channels Any2One, One2Any e Any2Any
class Q implements CSProcess
{

ChannelInput a;
ChannelOutput b;
a.read();
...
b.write(...);

}

class Q implements CSProcess
{

ChannelInput a;
ChannelOutput b;
a.read();
...
b.write(...);

}

class Example {
One2AnyChannel a = new One2AnyChannel();
Any2OneChannel b = new Any2OneChannel();
...
new Parallel (new CSProcess[] {

new Q(a,b),
new Q(a,b),
new CSProcess () {

public void run () {
a.write(...);
b.read();

}
}

}).run ();
}

class Example {
One2AnyChannel a = new One2AnyChannel();
Any2OneChannel b = new Any2OneChannel();
...
new Parallel (new CSProcess[] {

new Q(a,b),
new Q(a,b),
new CSProcess () {

public void run () {
a.write(...);
b.read();

}
}

}).run ();
}

Processes Mapping
P = Q || R and P = Q |a| R

Channels One2One must be used to assure point to
point synchronization (interaction).
The other channels (One2Any, Any2One, Any2Any) do
not guarantee synchronism among all participants.
The synchronization is achieved by referring the same
channel in both Q and R

Processes Mapping
P = Q || R and P = Q |a| R

For each two processes in parallel one channel
One2One is used for each event
synchronization.

// P |a| Q
One2OneChannel a = new One2OneChannel();

new Parallel (
new CSProcess[] {

new P(a),
new Q(a) }

).run ();

// P |a| Q
One2OneChannel a = new One2OneChannel();

new Parallel (
new CSProcess[] {

new P(a),
new Q(a) }

).run ();

Processes Mapping
P = Q || R and P = Q |a| R

For three or more processes in parallel na array
of channels One2One is used for each event
synchronization.

// (P |a| Q) |a| R
One2OneChannel[] a = One2OneChannel.create(3);

new Parallel (
new CSProcess[] {

new P(a[1], a[2]),
new Q(a[0], a[2]),
new R(a[0], a[1]),

}
).run ();

// (P |a| Q) |a| R
One2OneChannel[] a = One2OneChannel.create(3);

new Parallel (
new CSProcess[] {

new P(a[1], a[2]),
new Q(a[0], a[2]),
new R(a[0], a[1]),

}
).run (); Channel with Q Channel with Rchannel with P

Other JCSP constructions for
communication
• JCSP provides

– Barriers
– Buckets
– Both may synchronize any given number of processes,

but do not transfer information.

Exercises
• Implements in JCSP the following processes:

VM(c,t) = c > 0 & coffee -> VM(c-1,t)
[]
t > 0 & tea -> VM(c,t-1)

CLIENT = coffee -> CLIENT
|~|
tea -> CLIENT

SYSTEM = VM(10,10) [|{|coffee, tea|}|] CLIENT

Useful links

http://www.cs.kent.ac.uk/projects/ofa/jcsp/jcsp1-0-rc7/jcsp-docs/

http://www.cs.kent.ac.uk/projects/ofa/jcsp/

