Introduction to Communicating
Sequential Process (CSP)
(Lecture 13)

Mannheim, September 2007

Contents

 Introduction to JCSP (CSP for Java)

Introduction

e The implementation of a CSP specification
can be done using other environments
— UML-RT
— CTJ (libray similar to JCSP)
— occam (language that implements CSP)

e \We will see a brief overview of JCSP

JCSP: General Issues

Java library that implements the communication and
concurrency model of CSP/occam (with restrictions)

Gives support to the development of process-oriented
projects.

Implementation is based on the threads/monitor Java
mechanism.

Versions
— Base Edition
— Network Edition (provides support to distribution)

JCSP: General Issues

e CSP features available
— Prefix
— Channels
— Comunication (including buffers)
— Sequential Composition
— Parallelism (but not the alphabetized)
— External Choice (with restrictions and extensions)

e CSP features not available

— Hiding, relabelling, alphabetized parallel
composition, internal choice, index, ...

JCSP Process

A process Is an autonomous entity (the
execution flow Is independent)

Encapsulates states(attributes) and methods
— Constructors are public

Communicates with the environment through
channels (as in CSP)

Active behaviour (flow) implemented by
method run() (public)

JCSP Process

= A process is an object of a class that
implements a interface CSProcess

interface CSProcess {
public void run();

}

* Every class that implements CSProcess
must provide an implementation of

run()

Process Structure

class Example implements CSProcess {

private shared synchronisation objects
(channels etc.)
private state iInformation

public constructors
public accessors(gets)/mutators(sets)
(only to be used when not running)

private support methods (part of a run)
public void run() (process starts here)

JCSP Channels

« A channel is an object of a class that
Implements:

interface Channel {

}

JCSP Channels

* There are four types of interfaces:
— Channel Input
— ChannelOQOutput
— Channel InputliInt
— ChannelOutputlInt

JCSP Channels

A channel holds a data of some type.

e Channels can either send data to a process
(output channels), or receive data from a process
(Input channels)

Processes and channels

 When a process dispatch an event through a
channel, it stays blocked until the synchronisation
with another process occurs.

cl
C

P

}
}

ass P implements CSProcess{
hannelOutput a;

ublic void run({
a.write(...);

class Q implements CSProcess{
Channellnput a;

public void run(Q {

X = a.read();

¥
¥

Interfaces for integer channels
and objects

interface ChannelOutput { interface ChannelOutputlint {
public void write (Object 0); public void write (int 0);

} +

interface Channellnput { interface Channellnputint {
public Object read (); public Int read ();

} }

JCSP Channels

« An input and output channel may be of type:
— One20neChannel
— Any20neChannel
— One2AnyChannel
— Any2AnyChannel

e The two first types can be used inside ALT
constructs.

JCSP Channels

 One to one object channel. Allows only one writer
and one reader.

One20neChannel

JCSP Channels

e Any20neChannel. Allows many writers and one
reader.

Any20neChannel

Y 9 9

3 &

JCSP Channels

e One2AnyChannel. Allows one writer and many
readers.

One2AnyChannel

9 ©

@ o
.2
a

o o
.4
A J N

JCSP Channels

 Any2AnyChannel. Allows many writers and many
readers.

Q Angnycgnel @
© © © ©

Channels of objects

By default, channels are fully synchronised. At a given
time only one reader and only one writer can use the

channel.

« JCSP ofers a set of plugins of channels that provides
several buffering mechanisms.
(FIFO blocking, overflowing, overwriting, infinite)

e These plugins can be find Iin ycsp.util.

Example = Succlnt

class Succlnt implements CSProcess {

private final Channellnputint in;
private final ChannelOutputint out;

public Succlnt (Channellnputint in,
ChannelOutputint out) {
this.iIn = iIn;
this.out = out;

}

public void run O {
while (true) {
iInt n = In.read ();
out.write (n + 1);
+
+

Example in0 out

inl
class Plusint implements CSProcess {

private final Channellnputint InO;
private final Channellnputint Inl;
private final ChannelOutputint out;

public Plusint (Channellnputint i1n0O,
Channellnputint i1nl,
ChannelOutputint out) {

this.in0 = In0;

this.inl = 1nl;

this.out = out;
+

public void run O

Example in0 out

inl

class Plusint implements CSProcess {

private final channels (In0O, 1nl, out)

public Plusint (Channellnputint 1n0O, ...)

public void run O {
while (true) {

iInt N0 = In0.read ;

Int n1 = inl.read ();

out.write (N0 + nl);

}
}

Process Networks

e Process Instances (components) may be
combined to form a network.

* The resulting network Is also a process.

e Components are connected through
conectors (channel instances)

* The components execute In parallel.

The class Parallel

e Parallel isa CSProcess whose constructor has
as argument an array of processes.

e The method run() implements the parallel
composition of the argument processes.

e The semantics Is the same as the interaction
operator in CSP (||).

* The method run() finishes only when all
arguments finish sucessfully.

Example in0 out

inl

processes for
reading the input
in parallel

public void run () {

ProcessReadlnt readlnO
ProcessReadlnt readlnl

new ProcessReadlnt (1n0);
new ProcessReadlnt (inl);

CSProcess parRead =
new Parallel (new CSProcess|] {readInO, readlnl});

while (true) {
parRead.run ();
out.write (readlnO.value + readlnl.value);

}

The Class Parallel

o Ofers methods for adding (addProcess)

and removing processes
(removeProcess)

* However, these methods should be called
only when the object is not running.

o |If called during the execution, the effect
occurs only after the ending of the
execution.

Exercise

o Gives a JCSP implementation of the CSP process
Main below

Main = Send (0) || Read

Send (1) =chan !'1 -> Send (1+1)
Read = chan ? x -> Print(x); Read
Print(x) = ...

Process Send

public class Send implements CSProcess {
private final ChannelOutputint chan;
private Int 1;

public Send(ChannelOutputint chan, int 1) {
this.chan = chan;
this.1 = 1;

}

public void run() {
while (true) {
chan.write(1);

1 =1 + 1;

Process Read

public class Read implements CSProcess {
private final Channellnputint chan;

public Read(Channellnputint chan) {
this.chan = chan;

}

public void run() {
while gtrue) {

int 1 = chan.read();
System.out.printin(i);

}

Process Malin

public class ExampleMain {
public static void main (String[] args) {

One20neChannel Int chan =
new One20neChannelInt();

Send send = new Send(chan);
Read read = new Read (chan);
CSProcess|] parArray = {send,read};
Parallel par = new Parallel (parArray);
par.run();

Exercicio 2 - Comunicagdo Assincrona

public class ExampleMain {
public static void main (String[] argv) {

One20neChannellnt chanl =

new One20neChannellnt ();
One20neChannellnt chan2 =

new One20neChannellnt ();

new Parallel (new CSProcess[] {
new Send (chanl),
new ldentitylnt(chanl, chan2),
new Read (chan2)}).run (;

Sequential Composition

« class Sequence (implements CSProcess)

— CSProcess whose constructor has an
array of processes as argument.

— The method run() Implements a
sequential composition of the processes
In the argument.

Alternative

— Implements (external) choice

— Example: Selection algorithm

Channellnput chl, ch2 = _.
Guard[] guards = new Guard[] {chl, ch2¥;
boolean[] preconditions = new boolean[] {gl, g2};

Alternative alt = new Alterpative(guards);
iInt indexGuard = alt.select(preconditions);

Channel Mapping

* One20neChannel a = P(a) [|al]] Q(a)
 One2AnyChannel a=P(a) [|a]] (Q1(a) ||| Q2(a))
* Any20neChannel a=(P1(a) ||| P2(a)) [|a|]] Q(a)

 Any2AnyChannel a= (P1(a) ||| P2(a)) [|al]
(Q1(a) || Q2(a))
The communication is always point to point,

because only two processes communicate at each
time.

Processes Mapping

What do we have in CSP?
P=pre&a->P

P = a?x:{restricao} -> P
P=alx?y->P
P=(@->P)[1(b->P)
P=(->P)|~| (b->P)
P=a->Q

@->Q) [(b->R)
IR

| R

al R

O O O

P
P
P
P

=B ©O©ONDOTAWN R

=

JCSP does not
support all CSP
constructions!

We will present
some of them.

Processes Mapping
P=pre& - ->P

P 1implements CSProcess {

public void run({
boolean pre = ...
Guard[] guards = new Guard[]{ };
bollean[] preconditions = new boolean[] {pre};
Alternative alt = new Alternative(guards);

while (true) {
switch (alt.select(preconditions))

case O:

break;

Processes Mapping
P=a?ly->P

There are several forms for implementing channels of
several data.

Processes Mapping

D = a7x!/ -> P

P
Q

az?xly -> __. // a channel for each data
alx?y -> _._.

P{ AltingChannellnput ax;

DataX valueX = (DataX)ax.read();

}
Q{ ChannelOutput ax;

ax.write(valueX);

Processes Mapping

P=alx?y->P

P = alx?y -> ... // an i1nput (output) channel
Q = a?xly -> __. // for a composite type
P {

ChannelOutput a;

a.write(valueXxyY);

\ _ The values of x and y must

¥ be known
Q {

AltingChannel lnput a;

DataXY valueXY = (DataXY)a.read();

Processes Mapping
P=(@->P)[1(b->P)

® The input channels are directly used as guards

® Qutput channels cannot be used as guards.

— option 1: create a new input channel to
precede the output channel

blout -> _... user -> blout -> .._.

— option 2: use a timeout before the output
channel

Processes Mapping

P = (a?x -> P) [] (bly -> P)

P implements CSProcess {
AltingChannellnput a, user;
OutputChannel b;
public void run(Q) {
Guard[] guards = new Guard[]{a, user};
Alternative alt = new Alternative(guards);

whille (true) {
switch (alt.select())
case 0: a.read();

break;
case 1: user.read();
b.write(..);

break

Processes Mapping
P=(a->P)|~|(b->P)

® Notion not very clear

® Non determinism may be implementes through the
selection method of Alternatives
select() — selecs arbitrarily from the list of active guards

priSelect() — selects the first guard from the list of active
guards

fairSelect() — selects the less active visited guard

Processes Mapping

P=a->0Q

P 1tmplements CSProcess {
Channellnput a;
public void run() {

a.read();

new QQ)-run();

Processes Mapping

P=(@->Q [(b->R)

P implements CSProcess {
AltingChannellnput a, b;
public void run(Q) {
Guard[] guards = new Guard[]{a, b};
Alternative alt = new Alternative(guards);
while (true) {
switch (alt.select())
case 0: a.read();
new QQ)-runQ);
break;
case 1: b.read();
new RQ.run(Q);

break;

Processes Mapping

P=QIl|lQ
Channels Any20ne, One2Any e Any2Any

class Q implements CSProcess J class Example {

{ One2AnyChannel a = new One2AnyChannel();
Channel Input a; Any20neChannel b = new Any20neChannel();
ChannelOutput b; -
a.read(); new Parallel (new CSProcess[] {

S new Q(a,b),
b.write(...); new Q(a,b),
new CSProcess () {

public void run O {
a.write(...);
b.read();

Processes Mapping

P=Q]J||R and P=Q |a| R
® Channels One20ne must be used to assure point to
point synchronization (interaction).

® The other channels (One2Any, Any20ne, Any2Any) do
not guarantee synchronism among all participants.

® The synchronization is achieved by referring the same
channel inboth Qand R

Processes Mapping

P=Q||RandP=0Q |a| R

® [or each two processes In parallel one channel
One20ne Is used for each event
synchronization.

// P Ja] Q
One20neChannel a = new One20neChannel();

new Parallel (
new CSProcess[] {
new P(a),
new Q(a) }
)-run Q);

Processes Mapping

P=Q||RandP=0Q |a| R

® [or three or more processes in parallel na array

of channels One20ne Is used for each event
synchronization.

/7 (P la]l Q) |al R
One20neChannel[] a = One20neChannel .create(3);

new Parallel

new CSProcess[] {
new P(a

1] a[2]),
new Q(a[a[
new R([O] \

).r); channel with P Channel with Q channel with R

Other JCSP constructions for
communication

o JCSP provides
— Barriers
— Buckets

— Both may synchronize any given number of processes,
but do not transfer information.

Exercises

* Implements in JCSP the following processes:

VM(c,t) = c > 0 & coffee -> VM(c-1,1)

L1
t >0 & tea -> VM(c,t-1)

CLIENT = coffee -> CLIENT
1~
tea -> CLIENT

SYSTEM = VM(10,10) [|{|coffee, tea]}]] CLIENT

Useful links

