Introduction to Communicating Sequential Process (CSP) (Lecture 8)

Mannheim, September 2007
Contents

• Sequential Composition
• Semantics
Termination

Forms of unsuccessful termination resulting from design flaws are

- *Stop*, representing deadlock
- *Div* representing livelock.

By comparison process *Skip* represents deliberate successful termination on completion of a task.

A terminating trace of process *P* is a trace *t* after which *P* may terminate

\[P \text{ after } t \sqsubseteq \text{Skip}. \]
Sequential Composition

If P and Q are processes over then

$$P ; Q$$

denotes their *sequential composition* which first behaves like P; if P terminates it then behaves like Q; if P doesn’t terminate neither does $P ; Q$. The *iteration*, P^*, of P is defined $P^* = P ; P^*$.
Sequential Composition: Example

A vending machine which serves one customer is

\[V_1 = \text{coin} \rightarrow (\text{choc} \rightarrow \text{Skip} \mid \text{toffee} \rightarrow \text{Skip}) . \]

One which serves two is

\[V_1 ; V_1. \]

And one which serves customers forever is

\[V = V_1^*. \]
Sequential Composition: Example

Recall the infinite mutual recursion

$$R = R_0 = (\text{around} \rightarrow R \mid \text{up} \rightarrow R_1)$$
$$R_{n+1} = (\text{up} \rightarrow R_{n+2} \mid \text{down} \rightarrow R_n).$$

That process is expressed in finite form using sequential composition

$$Z = (\text{around} \rightarrow Z \mid \text{up} \rightarrow P ; Z)$$
$$P = (\text{up} \rightarrow P ; P \mid \text{down} \rightarrow \text{Skip}).$$
Sequential Composition: Example

The language consisting of strings having any number of a’s, followed by a b, followed by the same number of c’s as a’s is

$$\{<a>^n \wedge ^n \wedge <c>^n \mid n \in \mathbb{N}\}.$$

A process for that language is

$$L = \mu X \cdot (b \rightarrow \text{Skip} \quad | \quad a \rightarrow (X ; c \rightarrow \text{Skip})).$$
Sequential Composition: Example

The language whose strings start as above and are then followed by a d and then the same number of e’s as a’s is

\[\{ <a>^n \land ^n \land <c>^n \land <d>^n \land <e>^n \mid n \in \mathbb{N} \}. \]

A process for that language is

\[M = (L; d \rightarrow \text{Skip}) \|\{c,d\}\| f L, \]

where the injective relabelling f is defined

\[f a = c, f b = d, f c = e. \]
Sequential Composition: Laws

Sequential composition is associative and distributive in each argument, with unit Skip

- \((P ; Q) ; R = P ; (Q ; R)\)
- \((P \sqcap Q) ; R = (P ; R) \sqcap (Q ; R)\)
- \(P ; (Q \sqcap R) = (P ; Q) \sqcap (P ; R)\)
- \(\text{Skip} ; P = P = P ; \text{Skip}\)

Stop is a left zero, as is any divergent process

- \(\text{Stop} ; P = \text{Stop}\)
- \(\text{Div} ; P = \text{Div} \ldots\)
Sequential Composition: Laws

- Processes do not share their local variables. Thus in $P; Q$ the final state of P is independent of the initial state of Q.

For example in the sequential composition

$$(\ldots \rightarrow \text{out}!x \rightarrow \text{Skip}) ; (\text{in}?x \rightarrow \ldots)$$

the value of x in the first process has no relationship to the value of x in the second.
Sequential Composition: Laws

For example

\[in?x \rightarrow out!x \rightarrow Skip \]
\[\neq \]
\[(in?x \rightarrow Skip) ; (out!x \rightarrow Skip). \]

Indeed the latter process may output any value of the appropriate type on channel out whilst the former can output only the value it has input on in.
Sequential Composition: Laws

• However, provided a variable x is not free in process Q

$$(?x:A \rightarrow P(x));Q = ?x:A \rightarrow (P(x);Q)$$
Sequential Composition: Traces

The event of successful termination is represented by \checkmark, an event not in any Σ. It occurs only as the last event of a terminating process and is not available like other elements of for synchronisation, nor can it be hidden or renamed.

$$traces\ Skip = \{<> , < \checkmark > \}.$$

Write

$$\Sigma \checkmark = \Sigma \{ \checkmark \}$$

$$\Sigma \checkmark^* = \Sigma^* \{ t^< \checkmark > | t \Sigma^* \}$$
Sequential Composition: Traces

• The traces of $P; Q$ consist of those of P or those terminating traces of P with $\sqrt{}$ removed and concatenated with a trace of Q

$$\text{traces}(P ; Q) = \text{traces } P \quad \{s ^ t | (s ^ {< \sqrt{}}) \quad \text{traces } P \text{ and } t \quad \text{traces } Q\}.$$
Sequential Composition: Traces

- The traces of \(P; Q \) consist of those of \(P \) or those terminating traces of \(P \) with \(\sqrt{\ } \) removed and catenated with a trace of \(Q \)

\[
\text{traces}(P; Q) = \text{traces } P \ {s \upharpoonright t \mid (s \upharpoonright < \sqrt{\ } \quad \text{traces } P \quad \text{and} \quad t \quad \text{traces } Q}).
\]
Sequential Composition: Traces

- The traces of $P; Q$ consist of those of P or those terminating traces of P with $\sqrt{}$ removed and catenated with a trace of Q

$$\text{traces}(P; Q) = \text{traces } P \cup \{s^\ast t | (s^\ast <\sqrt{} >) \text{ traces } P \text{ and } t \text{ traces } Q\}.$$
Sequential Composition: Traces

- The traces of $P; Q$ consist of those of P or those terminating traces of P with $\sqrt{}$ removed and catenated with a trace of Q

\[
\text{traces}(P; Q) = \text{traces } P \cup \{s^\uparrow t | (s^\uparrow < \sqrt{}) \text{ traces } P \text{ and } t \text{ traces } Q\}.
\]
Assignment

• If \(x \) is a program variable and \(e \) is an expression and \(P \) a process

\[
(x := e; P)
\]

is a process that behaves like \(P \), except that the initial value of \(x \) is defined to be the initial value of the expression \(e \). Initial values of all other variables are unchanged.
Assignment: Examples

• A process that behaves like Rocket

\[X1 = \mu X. (\text{around} \rightarrow X \mid \text{up} \rightarrow (n:=1;X)) \]
\[<n=0> \]
\[(\text{up} \rightarrow (n:=n+1;X) \mid \text{down} \rightarrow (n:=n-1;X)) \]
Assignment: Examples

• A process which divides a natural number x by a positive number y, assigning the quotient to q and the remainder to r

$$QUOT = (q := x + y; r := x - q \cdot y)$$
Assignment: Laws

- \((x:=x) = \text{SKIP}\)
- \((x:=e; x:=f(x)) = (x:=f(e))\)
- If \(x, y\) is a list of distinct variables \((x:=e) = (x,y := e,y)\)
- If \(x,y,z\) are of the same length as \(e,f,g\) respectively
 \((x,y,z := e,f,g) = (x,z,y := e,g,f)\)
- \(x:=e ; (P \triangleleft b(x)\triangleright Q) = (x:=e;P) \triangleleft b(x)\triangleright (x:=e;Q)\)
- \(((x:=e;P)||Q) = (x:=e ; (P||Q))\) provided that \(P\) and \(Q\) are data independent...
Assignment: Laws

• \((x:=x) = \text{SKIP}\)
• \((x:=e; x:=f(x)) = (x:=f(e))\)
• If \(x, y\) is a list of distinct variables \((x:=e) = (x,y := e,y)\)
• If \(x,y,z\) are of the same length as \(e,f,g\) respectively \((x,y,z := e,f,g) = (x,z,y := e,g,f)\)
• \(x:=e ; (P \langle b(x) \rangle Q) = (x:=e;P) \langle b(x) \rangle (x:=e;Q)\)
• \(((x:=e;P)||Q) = (x:=e ; (P||Q))\) provided that \(P\) and \(Q\) are data independent...
Semantics

Traces do not distinguish internal and external choice

\[\text{traces}(P \sqcap Q) = \text{traces}(P[\sqcup Q]). \]

How do those processes differ?

- Since \(a \rightarrow A[\sqcup]b \rightarrow B \) offers its environment the choice between \(a \) and \(b \) the environment cannot refuse either; whichever of them is offered by the environment must be performed.
- Since \(a \rightarrow A \sqcap b \rightarrow B \) permits its environment no say in which of the two processes occurs, it may refuse either \(a \) or \(b \) but not both; whichever of them is offered by the environment, deadlock may occur.
Semantics: Refusals

If P is a (nonsequential) process its *refusals*, $\text{refusals } P$, are those subsets E of the universe which it may (initially) refuse to perform; if the environment offers a general choice from E, deadlock may occur.

For example over universe $\{a, b\}$,

$$\text{refusals}(a \rightarrow A[], b \rightarrow B) = \{\{\}\}$$

$$\text{refusals}(a \rightarrow A \cap b \rightarrow B) = \{\{\}, \{b\}, \{a\}\}.$$

Refusals thus distinguish internal and external choice.
Semantics: Refusals

Observe

\[
\text{refusals}(a \rightarrow A) = \{\{\}, \{b\}\}
\]
\[
\text{refusals}(b \rightarrow B) = \{\{\}, \{a\}\}.
\]

Thus from that example, and in general,

\[
\text{refusals}(P \mid\mid Q) = \text{refusals}(P) \cap \text{refusals}(Q)
\]
\[
\text{refusals}(P \cap Q) = \text{refusals}(P) \cup \text{refusals}(Q).
\]
Semantics: Failures

• If P is a (nonsequential) process its failures, $\text{failures } P$, consists of those pairs $\langle t, E \rangle$ for which t is a trace of P and E is a refusal of P after t. Thus after it has engaged in trace t the process may refuse E.

• For example over universe $\Sigma = \{a, b\}$:

 $\text{failures } \text{Stop} = \{(>,\{\}), (>,\{a\}), (>,\{b\}), (>,\{a,b\})\}$

 $= \{\langle >, E \rangle \mid E \subseteq \Sigma \}$

• The traces of a process can be reclaimed from its failures

 $\text{traces } P = \{t : \Sigma^* \mid (t, \{\}) \text{ failures } P\}$.
Semantics: Failures

- \(\text{failures}(a \rightarrow \text{Stop}) = \{(<>), \{ \}\}, (<>), \{b\}), (<>), \{a\}), (<a>, \{ \\}), (<a>, \{a\}), (<a>, \{b\}), (<a>, \{a, b\}) = \{(<>), E) | a \not\in E \Sigma \} \{(<a>, E) | E \Sigma \} \)

- \(\text{failures}(b \rightarrow \text{Stop}) = \{(<>), \{ \}\}, (<>), \{a\}), (<>), \{b\}), (<>), \{a, b\}) = \{(<>), E) | b \not\in E \Sigma \} \{(, E) | E \Sigma \} \)
Semantics: Failures

\[\text{failures}(a \rightarrow \text{Stop}[\emptyset]b \rightarrow \text{Stop}) = \]
\[\{ (\langle \rangle, \{ \}), (\langle a \rangle, \{ \}), (\langle a \rangle, \{a\}), (\langle a \rangle, \{b\}), (\langle a \rangle, \{a, b\}), (\langle b \rangle, \{ \}), (\langle b \rangle, \{a\}), (\langle b \rangle, \{b\}), (\langle b \rangle, \{a, b\}) \} = \]
\[\{ (\langle \rangle, \{ \}) \} \]

\[\{ (\langle a \rangle, E) \mid E \in \Sigma \} \]

\[\{ (\langle b \rangle, E) \mid E \in \Sigma \} \]
Semantics: Failures

\[\text{failures}(a \rightarrow \text{Stop} \sqcap b \rightarrow \text{Stop}) \]
\[= \]
\[\{(<>), (<>\{a\}), (<>\{b\}), (<a>, \{\}), (<a>, \{a\}), (<a>, \{b\}), (<a>, \{a, b\}), (, \{\}), (, \{a\}), (, \{b\}), (, \{a, b\})\} \]
\[= \]
\[\{(<>), (<>\{a\}), (<>\{b\})\} \]

\[\{(<a>,E) \mid E \in \Sigma\} \]

\[\{(,E) \mid E \in \Sigma\} \]

With failures we can distinguish internal from external choice.
Semantics: Failures

Failures refinement ordering

\[F \preceq_F G \equiv F \quad G. \]

Informally, every trace of \(G \) is a trace of \(F \) and if \(G \) deadlocks then \(F \) deadlocks; thus both the trace behaviour and the deadlock behaviour of \(G \) conform to that of \(F \).

Note: restricted to traces, \(\preceq_F \) yields refinement \(\preceq_T \) in the traces model:

\[F \preceq_F G \text{ implies } F \preceq_T G. \]
Semantics: Failures

The failures model is finer than the traces model (it distinguishes \square from $[[]]$) but is still not fully abstract for CSP (it doesn’t distinguish Div from Stop).
Semantics: Divergences

Failures do not distinguish deadlock and divergence
\[\text{failures } \text{Stop} = \text{failures } \text{Div} = \{(<> , E) \mid E \in \Sigma \} \].

How do those two processes differ?
- Stop performs no events, deadlocks immediately and does not diverge
- Div performs no events but diverges immediately.
Semantics: Divergences

For process P the divergences of P are the traces after which it diverges

$$\text{divergences } P = \{ t : \text{traces } P \mid P \text{ after } t = \text{Div} \}.$$

For example over universe $\{a, b\}$,

$$\text{divergences Stop} = \{ \}$$

$$\text{divergences Div} = ?$$

Recall that Div is minimal since $\text{Div} \cap P = \text{Div}$. Similarly from any point in the evolution of a process, divergent behaviour is indistinguishable from arbitrary behaviour.
Semantics: Divergences

Thus after diverging a process behaves like the least element: any trace is a divergence and any subset a refusal. Hence, because $<> \ divergences \ Div$,

$divergences \ Div = \Sigma^*$

$failures \ Div = \Sigma^* \times |P \Sigma|.$

Divergences thus distinguish $Stop$ and Div.
The healthiness conditions for divergences are

• if $t \ divergences \ P$ and $u \Sigma^*$ then $t \uparrow u \ divergences \ P$

• if $t \ divergences \ P$ then for all $E \Sigma$, $(t,E) \ failures \ P.$
Semantics: Failures & Divergences

• For finite universe the failures & divergences model of processes over Σ consists of the set N of pairs $(F,D) : F \times \Sigma^*$

• satisfying
 • $t \ D \ u \ \Sigma^* \ t \ ^u \ D$
 • $t \ D \ (t,E) \ F$.
Semantics: Failures & Divergences

The space is partially ordered by the failures & divergences refinement ordering

\[(F,D) \sqsubseteq_N (G,E) \equiv F \quad G \quad D \quad E.\]

Thus both the failures behaviour and the divergences behaviour of \((G,E)\) conform to that of \((F,D)\).
Semantics: Failures & Divergences

Home exercise: Study the failures and divergence semantics of the constructs of CSP.