Contents

• Administration
• The Issues of Concurrency
• Introduction to CSP
• Processes
Administration

• Lecturer:
 – Leila Silva
 (leila@ufs.br)
 – Federal University of Sergipe, Brazil
Administration

• Classes:
 – Theory (11 classes)
 – Exercises and tools (5 classes)
 – Projects (6 classes)
 – Theroretical studies (2 classes)
 – Seminars (5 classes – project + theoretical studies)
 – Written examination (1 class)
Administration

• Examinations:
 – Written examination (last class) - 30%
 – Project – 30%
 – Report about theoretical study – 20%
 – Seminars – 20%

• Room: 1/212

• Laboratory: 1/010
Administration

References

5. Classes notes of Dr. Alexandre Mota, UFPE, 2005.
Administration

• Tools
 – FDR and ProBE
 http://www.fsel.com/
 – JCSP
 http://www.cs.kent.ac.uk/projects/ofa/jcsp/

• Useful links
 http://www.comlab.ox.ac.uk/oucl/publications/books/concurrency
The Issues of Concurrency

• What is the study of concurrency?
 – Express and reason about systems of concurrent processes
 – Express: specify, design and implement
 – Reason: modify, compare, develop and verify
 – Concurrent systems: multiprocessors, operating systems, networks, reactive processes, etc...
The Issues of Concurrency

• The study of concurrence requires:
 – Formal notation with
 • large expressive power
 • laws for manipulating design
 • formal semantics
 • tools

CSP
CSP

• Conceived to specify and reason about concurrent systems whose component processes interact with each other by communication.
Process
Process

- Independent entities, self-contained (black box), with particular interfaces used to interact with the environment (which is itself a process!)

- In any run, a process performs a sequence of events.
Process

• Basic unit to capture behaviour.
• In general, we use a set of processes to get modularity.
• It is defined by equation(s)
 – \(P = \text{(behaviour)} \)
 • Similar to functional programming [although it is not a function!!!]
• Process names denote interesting system states/modules.
Process

Processes
Communication

• Term *communication* comes from the notion of interaction/observation/synchronisation
• It occurs between at least two parts [Which are?]
• A sequence of communications tells us a history (possible behaviour of a system → trace)
• A communication can be:
 – Event (no data communication → synchronisation)
 – Channel (a typed value is communicated)
Theory of Concurrency

• How is a theory of concurrency employed to implement a system?
 – Systems are decomposed into concurrently evolving processes.
 – Each process is treated as a system (and may be also decomposed into smaller systems)

• Any theory must handle:
 – the incremental approach: be compositional
 – change in level of abstraction: be hierarchical
A main feature of concurrent systems is non-determinism

- Consequence of abstraction
- A system is nondeterministic if it can exhibit different behaviors when given exactly the same inputs
- An implementation is deterministic
- In the development of a system, when passing to a less abstract description implies in removing nondeterminism
- development \Rightarrow refinement
Theory of Concurrency

• Above nondeterminism any theory of concurrency must be able to model
 – Deadlock
 • No component can make any progress
 – Livelock
 • System performs infinite internal actions and does not communicate with the environment anymore
An overview of CSP

• CSP offers a succinct notation for processes and a way of controlling the level of abstraction.

• Provides basic operations
 • paralellism \parallel
 • choice $\lbrack \rbrack$, $\lbrack \rbrack$, $\langle \rangle$
 • comunication $! ?$
 • abstraction \backslash
CSP

• Provides derived operations (*piping* ($>>$), *interleaving* ($|||$))
• Provides laws for those operations
• Semantics in layers ...traces...refusals...divergences...
• Tools
Processes

- What to specify? What is relevant to consider? How to do this?
- Processes interact among them through interfaces
- We need to abstract the internal actions and to focus on the interface: external actions
- Interaction / Communication
- The interface of a process is captured by a set of events
Events, Alphabets and Processes

• Modelling requires a level of abstraction.
• When modelling a process we observe its events.
• Events are atomic and instataneous.
• A set of events forms the:
 – alphabet of the process being observed;
 – the universe under observation for several processes.
• Alphabet: αP
• Universe of a system: Σ
Processes

• A process exhibits a pattern of behaviour in which it offers certain events for synchronisation with its environment.
• Each event forms an interaction between the process and its environment.
• If the interaction does not occur the process blocks.
Processes

Example: Simple vending machine (VMS)

Events: coin and choc
Alphabet: $\alpha_{VMS} = \{\text{coin, choc}\}$

Are there any alternatives?
Alphabets: Exercises

- A machine that accepts a 5p coins and returns the same amount in 1p and 2p coins.

- An alarm that emits beeps indefinitely.

- A board that only accepts up and down movements.
Alphabets: Exercises

• A machine that accepts a 5p coins and returns the same amount in 1p and 2p coins.
 \(\alpha_{Chh}: \{\text{in5, out1, out2}\} \)

• An alarm that emits beeps indefinitely.
 \(\alpha_{Alarm}: \{\text{beep}\} \)

• A board that only accepts up and right movements.
 \(\alpha_{Board}: \{\text{up, right}\} \)
Processes

STOP

• Process that:
 – does not offer any event for communication;
 – performs no event, blocking them all.
• Represents a system (process)
 – in deadlock, or
 – Broken
• Terminal process
Processes

STOP
Processes

SKIP

- Process that does nothing and ends successfully.
- Terminal process
- It only communicates a special event (✓)
- After that, no communication and progress is possible
Processes

$SKIP$
Prefix

- Most basic construct to model behaviour: \(a \rightarrow P \) (\(a \) is a prefix of \(P \)), given an event \(a \) and a process \(P \).
- Offer an event \(a \) and wait, indefinitely, until a communication happens.
- After the communication, behaves like \(P \).
- A process description that begins with a prefix is said to be guarded.
Prefix \((a \rightarrow P)\)
Example

αBoard: \{up, right\}
Board: right -> up -> right -> right -> STOP
Processes: common errors

• For processes P and Q,

 $P \rightarrow Q$

 is wrong. Use sequential composition $P;Q$.

• For events a and b,

 $a \rightarrow b$

 is wrong. Use terminating process $STOP$ or $SKIP$ to write

 $a \rightarrow b \rightarrow STOP$ or $a \rightarrow b \rightarrow SKIP$

 depending on whether we wish to model unsuccessful or successful termination.
Processes: Exercises

1. A vending machine that accepts a coin and breaks.

2. A chocolate vending machine that serves two customers and breaks.
Processes: Exercises

1. A vending machine that accepts a coin and breaks.
 \[
 \{ \text{coin} \rightarrow \text{STOP} \}
 \]

2. A chocolate vending machine that serves two customers and breaks.
 \[
 \{ \text{coin} \rightarrow (\text{choc} \rightarrow (\text{coin} \rightarrow (\text{choc} \rightarrow \text{STOP}))))) \}
 \]
Prefix: Precedence

• Excepting for the renaming operator, prefix has the highest precedence among CSP operators; it is right associative.

\[\text{coin} \rightarrow (\text{choc} \rightarrow \text{STOP}) = \text{coin} \rightarrow \text{choc} \rightarrow \text{STOP} \]
A Complete Specification

• It is a combination of
 – Alphabet declarations
 – Function and set definitions
 • $Odd(n) = (n \% 2 == 1)$
 • $T = \{0, 1, 2\}$
 – And process definitions
 • $P = up -> down -> up -> down -> STOP$
• And, in general, following this ordering
Continuous Behaviour

• Various systems have a series of repetitive behaviour
• And these repetitions can be infinite
• Infinite behaviour becomes recursion
 – $P = (\text{sequence of communications}) \rightarrow P$
• Right-side process name is replaced by a left-side process definition
Recursion

Examples:

• A vending machine that ever function
 \[V = \text{coin} \rightarrow \text{choc} \rightarrow \text{coin} \rightarrow \text{choc} \rightarrow \ldots \]
 \[V = \text{coin} \rightarrow \text{choc} \rightarrow V \]
• A student who snores indefinitely:
 \[\alpha \text{Student} = \{\text{snore}\} \]
 \[\text{Student} = \text{snore} \rightarrow \text{Student} \]
Recursion Notation

• For guarded function F on processes, the solution to the recursive equation

 \[X = F X \]

 over alphabet A is written

 \[\mu X : A \cdot F X \]

• Guarded means that $F X$ always starts with some event. E.g.

 \[F X = \text{snore} \rightarrow X. \]
Recursion Notation: Examples

• For a process X with alphabet \{\textit{snore}\} and $FX = \text{snore} \to X$

 $$\text{Student} = \mu X: \{\text{snore}\}. (\text{snore}\to X).$$

 \begin{center}
 \begin{tikzpicture}
 \node (A) at (0,0) {A};
 \node (FX) at (1,1) {FX};
 \draw[->,blue,shorten >=1pt] (A) -- (FX);
 \end{tikzpicture}
 \end{center}

• For a process X with alphabet \{\textit{coin, choc}\} and $FX = \text{coin} \to \text{choc} \to X$

 $$\text{VMS} = \mu X: \{\text{coin, choc}\}. (\text{coin}\to\text{choc}\to X).$$

 \begin{center}
 \begin{tikzpicture}
 \node (A) at (0,0) {A};
 \node (FX) at (1,1) {FX};
 \draw[->,blue,shorten >=1pt] (A) -- (FX);
 \end{tikzpicture}
 \end{center}
Recursion Notation: Exercises

1. Specify a clock that does anything but tick.
Recursion Notation: Exercises

1. Specify a clock that does anything but tick.

\[\alpha \text{CLOCK} = \{\text{tick}\} \]
\[\text{CLOCK} = \mu X: \{\text{tick}\}. (\text{tick} \rightarrow X) \]
Equivalent to:
\[\text{CLOCK} = (\text{tick} \rightarrow \text{CLOCK}) \]
\[= (\text{tick} \rightarrow (\text{tick} \rightarrow \text{CLOCK})) \text{ by substitution} \]
\[= (\text{tick} \rightarrow \text{tick} \rightarrow \text{tick} \rightarrow \text{CLOCK}) \text{ by substitution} \]
\[= \ldots = \text{tick} \rightarrow \text{tick} \rightarrow \text{tick} \rightarrow \text{tick} \ldots \]
Recursion Notation: Exercises

2. A change machine which inputs $in5$ and outputs $out2$ and $out1$ in a fixed order.
Recursion Notation: Exercises

2. A change machine which inputs \textit{in}5 and outputs change \textit{out}2 and \textit{out}1 in a fixed order.

\[\alpha Ch = \{in5, out1, out2\} \]

\[Ch = in5 \rightarrow out2 \rightarrow out1 \rightarrow out1 \rightarrow out1 \rightarrow Ch \]

\[Ch = \mu X : \{in5, out1, out2\} \cdot (in5 \rightarrow out2 \rightarrow out1 \rightarrow out1 \rightarrow out1 \rightarrow X). \]
Menu choice

• A process may offer its environment a choice of events.

• Example: $\alpha Board = \{up, right\}$

\[
Board = (\quad up \rightarrow STOP \\
| \quad right \rightarrow right \rightarrow up \rightarrow STOP)
\]
Menu choice

- If a and b are distinct events, $a \neq b$, and P and Q are processes then

 $$(a \rightarrow P \mid b \rightarrow Q)$$

 is the process which offers its environment a choice of events a or b in which case it subsequently behaves like P or Q, respectively.
Menu choice

• Can be generalized to:

\[(a_1 \rightarrow P_1 \mid \ldots \mid a_n \rightarrow P_n)\]

given different events \(a_1, \ldots, a_n\), and processes \(P_1, \ldots, P_n\)

• The choice symbol is not an operator between processes. Thus,

\[P \mid Q\]
\[(x \rightarrow P) \mid (x \rightarrow Q)\]
\[(x \rightarrow P \mid y \rightarrow Q \mid z \rightarrow R) \neq (x \rightarrow P \mid (y \rightarrow Q \mid z \rightarrow R))\]

A single operator with three arguments

Wrong (syntax)

A single process
Menu choice: Example

• A more useful change machine offers the user a choice of changes

\[\alpha Chh = \{ \text{in5, out1, out2} \} \]

\[Chh = \text{in5} \rightarrow (\text{out2} \rightarrow \text{out1} \rightarrow \text{out1} \rightarrow \text{out1} \rightarrow Chh \]

\[\quad \mid \text{out1} \rightarrow \text{out2} \rightarrow \text{out2} \rightarrow Chh). \]

Distinct events for a menu choice.
Menu choice: General Case Notation

The process which offers its environment a choice of an event in A

$$?x : A \rightarrow P(x).$$

Scope of variable x.

• Cases:

$A = \{\}$: deadlock, STOP
$A = \{a\}$: prefix $a \rightarrow P$
$A = \{a, b\}$: menu choice $(a \rightarrow P(a)$

$$| b \rightarrow P(b))$$

$A = \{a_1, a_2, ..., a_n\}$: general choice $(a_1 \rightarrow P(a_1)$

$$| a_2 \rightarrow P(a_2) | ...$$

$$| a_n \rightarrow P(a_n))$$
Menu Choice: Exercises

1. A machine that serves either chocolate or toffee on each transaction.
Menu Choice: Exercises

1. A machine that serves either chocolate or toffee on each transaction.

\[VM2 = \mu X : \{\text{coin, choc, toffee}\} \cdot \]
\[\text{coin} \rightarrow (\text{choc} \rightarrow X \mid \text{toffee} \rightarrow X) \]
Menu Choice: Exercises

1. A machine that allows its customer to sample a chocolate and trusts him to pay after. The normal sequence of events is also allowed.
Menu Choice: Exercises

1. A machine that allows its customer to sample a chocolate and trusts him to pay after. The normal sequence of events is also allowed.

\[VM3 = \mu X : \{ \text{coin, choc} \} \cdot (\text{coin} \to \text{choc} \to X \) \\
| \text{choc} \to \text{coin} \to X) \]
Mutual Recursion

Several equations define the process behaviour

Example:

\[P_1 = \text{up} \rightarrow \text{down} \rightarrow P_1 \]

can be defined by:

\[P_u = \text{up} \rightarrow P_d \]
\[P_d = \text{down} \rightarrow P_u \]
Mutual recursion

A rocket when in the air may be guided up or down; when on the ground it may be guided around.

\[\alpha \text{Rocket} = \{ \text{up, down, around} \} \]
\[\text{Rocket} = R_0 = (\text{up} \rightarrow R_1 \mid \text{around} \rightarrow \text{Rocket}) \]
\[R_{n+1} = (\text{up} \rightarrow R_{n+2} \mid \text{down} \rightarrow R_n) \]
Mutual Recursion

\(\alpha C = \{up, down, left, right\} \)

\(C = (up \rightarrow D \mid left \rightarrow A \mid right \rightarrow E) \)

\(D = (down \rightarrow C \mid left \rightarrow B \mid right \rightarrow F) \)

\(E = (up \rightarrow F \mid left \rightarrow C) \)

\(F = (down \rightarrow E \mid left \rightarrow D) \)

\(A = (up \rightarrow B \mid right \rightarrow C) \)

\(B = (down \rightarrow A \mid right \rightarrow D) \)
Mutual Recursion: Exercises

1. The process $LIGHT$ may be defined in terms of process ON, which is itself defined in terms of process $LIGHT$. The events are on and off.
Mutual Recursion: Exercises

1. The process $LIGHT$ may be defined in terms of process ON, which is itself defined in terms of process $LIGHT$. The events are on and off.

$$LIGHT = on \rightarrow ON$$
$$ON = off \rightarrow LIGHT$$
Mutual Recursion: Exercises

2. A counter can be incremented (up) or decremented (down) at any point, provided the total number of decremented events does not exceed the number of increment events.
Mutual Recursion: Exercises

2. A counter can be incremented \((up)\) or decremented \((down)\) at any point, provided the total number of decremented events does not exceed the number of increment events.

\[
\begin{align*}
COUNT_0 &= up \rightarrow COUNT_1 \\
COUNT_n &= (up \rightarrow COUNT_{n+1}) \\
&\quad | down \rightarrow COUNT_{n-1}) \quad (n > 0)
\end{align*}
\]
Communication Events

- The event consisting of communication of value \(v \) on channel \(c \) is written \(c.v \). Usually a communication event results from an input and output occurring in parallel.
- Output event: \(c ! e \)
- Input event: \(c ? x \)
- Example:

\[
Copy = in ? x -> out ! x -> Copy
\]
Communication Events

• The set of all events communicated along channel c is denoted $\{|c|\}$.

• Example:
 – If process $Copy$ has channel in of integer type then
 $\{|in|\} = \{in.z \mid z \in \mathbb{Z}\}$
Communication Events

An accumulator is used to keep track of running totals of sequences of numbers. It has a reset event, a query channel on which the current total can be output, and an add channel where it is possible to add another number.

\[
\text{Accumulator} = R_0 \\
R_i = (\text{reset} \rightarrow R_0 \mid \text{query} ! i \rightarrow R_i \mid \text{add} ? x : N \rightarrow R_{i+x})
\]
Events vs Channels

- They are conceptually distinct
- But, in practice, a channel is indeed a set of events
- Thus, the channel $a:\{0,1\}$ is the set of events $\{a.0, a.1\}$
 - Note the use of the . operator as a separator
 - Channels simply have a more elegant and readable presentation than events
Communication Events: Exercises

1. A process that duplicates its input data.

2. A process that given two natural numbers, outputs their product.
Communication Events: Exercises

1. A process that duplicates its input data.

\[\text{Dup} = \text{in} \ ?x \rightarrow \text{out} \ ! \ x \rightarrow \text{out} \ ! \ x \rightarrow \text{Dup} \]

2. A process that given two natural numbers, outputs their product.

\[\text{Prod} = \text{in} \ ?x:N \rightarrow \text{in} \ ?y:N \rightarrow \text{out} \ ! \ (x*y) \rightarrow \text{STOP} \]