Fakultät für Informatik, Institut für Robotik Laborpraktikum Legorobotik in C – EV3 Ute Ihme

Hochschule Mannheim | Ute Ihme

DAS LEGO[®] MINDSTORMS[®] System Das EV3 System

Prinzip von LEGO® MINDSTORMS®

- Roboter wird gebaut mit
 - programmierbarem LEGO[®] Stein
 - ➢ bis zu 4 Motoren oder Lampen
 - bis zu 4 Sensoren
 - ➢ LEGO[®] TECHNIC Teile
- Erstellung eines Steuerprogramms am Computer
- Übertragen des Programms auf den Roboter
- Testen des Programms

DAS LEGO® MINDSTORMS® System

Der EV3 Stein

Motoren werden an die Anschlüsse A, B, C und D angeschlossen.

Sensoren werden an die Anschlüsse 1, 2, 3 und 4 angeschlossen.

DAS LEGO® MINDSTORMS® System

Der EV3 Stein – Bezeichnung der Buttons

DAS LEGO® MINDSTORMS® System

Motoren

Quelle: Lego

Motoren werden an die Anschlüsse A, B, C und D angeschlossen.

Servomotor

- Verfügt über integrierten
 Rotationssensor
 - misst Geschwindigkeit und Abstand
 - Leitet Ergebnisse an NXT Stein weiter
- Motor kann auf einen Grad genau gesteuert werden
- Kombinationen mehrerer Motoren möglich
 - arbeiten ggf. mit gleicher
 Geschwindigkeit

DAS LEGO[®] MINDSTORMS[®] System Standardsensoren

Start der Entwicklungsumgebung

Starten von RobotC

Startsymbol:

Startbildschirm:

Start der Entwicklungsumgebung

Starten von RobotC

Einstellen des Platformtypes – hier EV3 wählen

🚭 ROBOTC-Trial							
File Edit View	Ro	Robot Window Help			_		
New File		Compile and Download Program Compile Program		F5 F7		Compile Program	
Text Functions	n	Compiler Targ	et	•			
🗄 - EV3 LED		Debugger Windows		•			
⊕. Math ⊕. Motors		LEGO Brick		•			
Sensors	Platform Type		•	•	LEGO Mindstorms EV3		
Sound Timing		Motors and S	ensors Setup			LEGO Mindstorms NXT	
		Download Fir	mware	•		LEGO Mindstorms	
Download EV3 Linux Kernel		•		Natural Language			
						-	

Start der Entwicklungsumgebung Starten von RobotC

Erstellen einer neuen Datei

Start der Entwicklungsumgebung

Startbildschirm

Displayanzeige

displayTextLine(zeilennummer,text)

Parameter	Erklärung
zeilennummer	Zeile, in der der Text angezeigt wird
text	Anzuzeigender Text

Beispiel

displayTextLine(3, "Hello");

Displayanzeige löschen

eraseDisplay()

Beispiel

eraseDisplay()

Pausenbefehle

1. Sleep - Befehl

sleep(Zeit)BeispielZeit in mssleep(3000);

2. Warten auf Knopfdruck I

waitForButtonPress()

Dieser Befehl behält seinen Parameter, so dass dieser nicht mehrfach in einem Programm verwendet werden kann.

Beispielprogramm zur Display und Pause

```
5
       task main()
 6
       £
 7
         displayTextLine(3, "Hello World");
 8
         waitForButtonPress();
 9
         eraseDisplay();
10
         displayTextLine(4, "Robotic ind C");
11
         sleep(3000);
12
13
       }
```


Beispielprogramm zur Display und Pause

5. Programm auf dem Roboter starten!

Pausenbefehle

3. Warten auf Knopfdruck II

waitUntil(getButtonPress(Knopf))

Dieser Befehl kann mehrfach verwendet werden. Allerdings muss eine Pause in Form einer Sleep-Funktion eingefügt werden. Siehe Beispiel

Beispiel – Mehrfaches Warten auf Knopfdruck

```
task main()
{
    displayTextLine(3, "Hello");
    sleep(1000);
    waitUntil(getButtonPress(buttonAny));
    displayTextLine(4, "Hello1");
    sleep(1000);
    waitUntil(getButtonPress(buttonAny));
    displayTextLine(5, "Hello2");
    sleep(1000);
    waitUntil(getButtonPress(buttonAny));
}
```


DAS SPIELFELD - Legostadt Allgemeiner Aufbau

DAS SPIELFELD - Legostadt

Hinweise zur Bearbeitung der Praktikumsaufgaben

- Jede Aufgabe des Spielfeldes ist eine eigenständige Aufgabe.
 D. h. jede Aufgabe soll einzeln gelöst werden und muss nicht mit anderen Aufgaben kombiniert werden.
- Erstellen Sie ein Projekt mit einer Klasse, die eine Main Methode
- Schreiben Sie das entsprechende Programm
- Für eine neue Aufgaben, löschen Sie den nicht mehr benötigten Quelltext bzw. kommentieren diesen aus.
- Erstellen Sie f
 ür eine neue Aufgabe keine neue Klasse mit einer main-Methode in dem selben Projekt.
- Bei Bedarf erstellen Sie für eine neue Aufgabe ein neues Projekt mit einer neuen Klasse, die eine main-Methode enthält

DAS SPIELFELD - Legostadt

Übung 1: Bestimmung der Strecke, die der Roboter in 1 s vorwärts fährt

Start:

Einer der Übungsplätze Ü1, Ü2, Ü3 oder Ü4

Vorgehensweise:

- Schreiben eines Programm, dass den Roboter bei einer bestimmten Geschwindigkeit 1s vorwärts fahren lässt
- Platzieren des Roboters an der schwarzen Linie in einem der Übungsplätze
- Starten des Programms
- Messen der Strecke und Wert notieren
- Über Verhältsnisgleichungen kann man nun die Zeit bestimmen, die der Roboter braucht, um bestimmte Strecken zurückzulegen

DAS LEGO[®] MINDSTORMS[®] System Motoren

Quelle: Lego

Servomotor

- Verfügt über integrierten
 Rotationssensor
 - misst Geschwindigkeit und Abstand
 - Leitet Ergebnisse an NXT Stein weiter
- Motor kann auf einen Grad genau gesteuert werden
- Kombinationen mehrerer Motoren möglich
 - arbeiten ggf. mit gleicher
 Geschwindigkeit

}

i Timing

Arbeit mit RobotC Setup der Motoren und Sensoren

Motors and Sensors Setup						×
Standard Models Motors Sensors						
Port	Туре	Reversed	- Encoder -	- PID Control -	Drive Motor Side	
motorA	EV3 Motor (Large) 🔻		1		None 🔻	
motorB	EV3 Motor (Large) 💌		\checkmark	V	None 🔻	
motorC	EV3 Motor (Large) 🔻		\checkmark	V	None 🔻	
motorD	EV3 Motor (Large) 🔻		\checkmark		None 🔻	
				ОК	Abbrechen Übernehmen	Hilfe

Einstellungen für die Motoren entsprechend der Roboterkonfiguration vornehmen

Siehe nächste Folie

Arbeit mit RobotC

Setup der Motoren und Sensoren

Arbeit mit RobotC Setup der Motoren und Sensoren

🐨 ROBOTC	- 0	\times
File Edit View Robot Window Help		
New File Open File	Fix Wotor and Firmware Formating Download Formating Download Formating Download Download Download Formating	
Text Functions	LEGO Start Page XXX.c	4 Þ 🗙
 - ~Control Structures EV3 LED Math Motors Sensors Sound Timing 	1 #pragma config(Motor, motorB, MotorRechts, tmotorEV3_Large, PIDControl, driveRight, encoder) 2 #pragma config(Motor, motorC, MotorLinks, tmotorEV3_Large, PIDControl, driveLeft, encoder) 3 //*!!Code automatically generated by 'ROBOTC' configuration wizard 4 task main() 6 { 7 8 }	

Befehle zur Motorsteuerung – Zeitgesteuert

setMotorSpeed(motorIndex,speed)

Parameter	Erklärung
motorIndex	Anzusteuernder Motor
speed	Geschwindigkeit Wertebereich: -100 bis 100 100: volle Geschwindigkeit vorwärts -100: volle Geschwindigkeit rückwärts 0: Stop

Befehle zur Motorsteuerung – Zeitgesteuert

// vorwaerts fahren
setMotorSpeed(motorB,70);
setMotorSpeed(motorC,70);

// rückwaerts fahren
setMotorSpeed(motorB,-70);
setMotorSpeed(motorC,-70);

// Anhalten
setMotorSpeed(motorB,0);
setMotorSpeed(motorC,0);

// Linkskurve
setMotorSpeed(motorB,-70);
setMotorSpeed(motorC,70);

// Rechtskurve
setMotorSpeed(motorB,70);
setMotorSpeed(motorC,-70);

hochschule mannheim

Beispiel zur Motorsteuerung zeitgesteuert

Der Roboter fährt

- Geradeaus

- Dreht sich links herum
- Dreht sich rechts herum
- Fährt rückwärts
- Hält an.

task main()

// vorwaerts fahren
setMotorSpeed(motorB,70);
setMotorSpeed(motorC,70);
sleep(1000);

// rückwaerts fahren
setMotorSpeed(motorB,-70);
setMotorSpeed(motorC,-70);
sleep(1000);

// Linkskurve
setMotorSpeed(motorB,-70);
setMotorSpeed(motorC,70);
sleep(1000);

// Rechtskurve
setMotorSpeed(motorB,70);
setMotorSpeed(motorC,-70);
sleep(1000);

// Anhalten
setMotorSpeed(motorB,0);
setMotorSpeed(motorC,0);
sleep(1000);

DAS SPIELFELD: Legostadt

Übung 1: Bestimmung der Strecke, die der Roboter in 1 s vorwärts fährt

Start:

Einer der Übungsplätze Ü1, Ü2, Ü3 oder Ü4

- Vorgehensweise:
- Schreiben eines Programm, dass den Roboter bei einer bestimmten Geschwindigkeit 1s vorwärts fahren lässt
- Platzieren des Roboters an der schwarzen Linie in einem der Übungsplätze
- Starten des Programms
- Messen der Strecke und Wert notieren
- Über Verhältsnisgleichungen kann man nun die Zeit bestimmen, die der Roboter braucht, um bestimmte Strecken zurückzulegen

DAS SPIELFELD: Legostadt

Übung 2: Der Roboter soll von einem der Übungsplätze auf das Startfeld fahren

Start: Einer der Übungsplätze Ü1, Ü2, Ü3 oder Ü4

Ziel: Erreichen des Startfeldes

DAS SPIELFELD: Legostadt

Übung 3: Motorensteuerung - rotationsgesteuert

In dieser Übung sollen die Befehle zur rotationsgesteuert Motorensteuerung ausprobiert werden. Dazu machen Sie sich mit den Befehlen auf den nachfolgenden Folien vertraut und probieren Sie den Roboter vorwärts, rückwärts, nach links und rechts fahren zu lassen.

DAS SPIELFELD: Legostadt

Motorensteuerung - rotationsgesteuert

nTurnRation	
100	Positiver Antrieb auf MotorOne und negativer Antrieb auf MotorTwo
-100	Negativer Antrieb auf MotorOne und Positiver Antrieb auf MotorTwo
0	Gleicher Antrieb auf beide Motoren
50	Antrieb nur auf MotorOne; MotorTwo still
-50	MotorOne stiell, Antrieb nur auf MotorTwo

DAS SPIELFELD: Legostadt

Motorensteuerung - rotationsgesteuert

nmotorOne	Port des ersten Motors
nmotorTwo	Port des zweiten Motors
nTurnRation	Verhältnis vom ersten zum zweiten Motor
nEncoderCount	Rotationswinkel
nSignedPower	Powerlevel

DAS SPIELFELD: Legostadt

Motorensteuerung - rotationsgesteuert

waitUntilMotorStop(nmotor)

Befehl ersetzt einen sleep()-Befehl. Das Programm wartet mit der weiteren Ausführung darauf, das der Motor anhält.

DAS SPIELFELD: Legostadt

Motorensteuerung – rotationsgesteuert Programmbeispiel

```
task main()
{
    //vorwärts
    setMotorSyncEncoder(motorB,motorC,0,1000,70);
    waitUntilMotorStop(motorB);
    //rechts
    setMotorSyncEncoder(motorB,motorC,100,1000,70);
    waitUntilMotorStop(motorB);
    //links
    setMotorSyncEncoder(motorB,motorC,-100,1000,70);
    waitUntilMotorStop(motorB);
    //rückwärts
    setMotorSyncEncoder(motorB,motorC,0,1000,-70);
    waitUntilMotorStop(motorB);
}
```


DAS SPIELFELD: Legostadt

Übung 3: Motorensteuerung - rotationsgesteuert

In dieser Übung sollen die Befehle zur rotationsgesteuert Motorensteuerung ausprobiert werden. Dazu machen Sie sich mit den Befehlen auf den nachfolgenden Folien vertraut und probieren Sie den Roboter vorwärts, rückwärts, nach links und rechts fahren zu lassen.

Die Übungsphase ist vorbei. Alles verstanden? Wenn ja, dann kann mit der Bearbeitung der nachfolgenden Aufgaben begonnen werden.

Die nachfolgenden Aufgaben müssen durch einen Praktikumsbetreuer abgenommen und unterschrieben bzw. bewertet werden! hochschule mannheim

DAS SPIELFELD: Legostadt

Aufgabe 1: Fahrt zum Haus

Start: Startfeld Ende: Parkplatz am Haus Der Roboter soll vom Startplatz zum Parkfläche am Haus fahren. Dabei soll er der vorgegebenen Straße.

Ziel:

Festigung der Steuerung des Roboters.

- Geradeausfahren
- Kurvenfahren

C CODE

Artithmetische Operatoren

Operator	Beispiel	Wirkung
+	a + b	Addiert a und b
-	a-b	Subtrahiert b von a
*	a*b	Multipliziert a und b
/	a/b	Dividiert a durch b
%	a % b	Liefert den Rest bei der Division a durch b

C CODE Vergleichsoperatoren

Operator	Beispiel	Wirkung
>	a > b	a größer als b
>=	a >= b	a größer oder gleich b
<	a < b	a kleiner als b
<=	a <= b	a kleiner oder gleich b
==	a == b	a ist gleich b
!=	a != b	a ist ungleich b

C CODE

Logische Operatoren (Auswahl)

Operator	Beispiel	Wirkung
&&	a && b	a und b müssen erfüllt sein
	a b	a oder b muss erfüllt sein

Aufgabe 2: Beförderung von Fahrgästen zwischen Bahnhof und Airport (for Schleife)

Start und Ende: Parkfläche Bahnhof

Der Roboter soll als Shuttlebus Gäste zwischen Bahnhof und Airport hin und zurück befördern.

Der Roboter startet per Knopfdruck, wenn der Gast eingestiegen ist. Der Roboter fährt die Strecke vom Bahnhof zum Airport vorwärts. Lässt Gäste ein- und aussteigen und fährt nach Knopfdruck die gleiche Strecke rückwärts zurück.

Die Zahl soll angezeigt werden.

Insgesamt soll der Roboter die Strecke 3mal absolvieren!

Auf den Parkflächen darf der Roboter neu ausgerichtet werden!

C CODE

.....

Die for Schleife

Eine Anweisung bzw. eine Folge von Anweisungen soll mehrfach wiederholt werden.

```
for(Startwert;Endwert;Erhöhung) Beispiel:
{
    Anweisung
    ...
    Anweisung
}
Beispiel:
for(i=1;i<=7;i++)
{
    Anweisung
    ...
    Anweisung
    ...
    Anweisung
}</pre>
```


C CODE

Bespiel für for Schleife

Das Wort Hello soll in 5 Zeilen untereinander angezeigt werden.

```
1
 2
        task main()
 3
        Ł
 4
 5
          for(int i = 1;i<=5;i++)</pre>
 6
 7
            displayTextLine(i, "Hello");
 8
            sleep(2000);
 9
10
          }
11
12
        }
```


Aufgabe 2: Beförderung von Fahrgästen zwischen Bahnhof und Airport (for Schleife)

Start und Ende: Parkfläche Bahnhof

Der Roboter soll als Shuttlebus Gäste zwischen Bahnhof und Airport hin und zurück befördern.

Der Roboter startet per Knopfdruck, wenn der Gast eingestiegen ist. Der Roboter fährt die Strecke vom Bahnhof zum Airport vorwärts. Lässt Gäste ein- und aussteigen und fährt nach Knopfdruck die gleiche Strecke rückwärts zurück.

Die Zahl soll angezeigt werden.

Insgesamt soll der Roboter die Strecke 3mal absolvieren!

Auf den Parkflächen darf der Roboter neu ausgerichtet werden!

hochschule mannheim

DAS SPIELFELD: Legostadt

Aufgabe 3: Anfahren und Anhalten

Schreiben Sie ein Programm, das den Roboter langsam anfahren lässt (schrittweise Erhöhen der Power) danach eine gewisse Zeit mit gleichbleibender Geschwindigkeit fährt und danach langsam abbremst.

Aufgabe 4: if ... else Abfrage Der Roboter soll entweder zum Krankenhaus oder zur Schule fahren

Start: Parkplatz am Haus

Ende: Parkplatz Krankenhaus bzw. Ein- und Ausstiegsfeld an der Schule

Der Roboter soll vom Parkplatz am Haus entweder zur

Schule oder zum Krankenhaus fahren. Die Auswahl des Ziel erfolgt in Abhängigkeit vom Button, der am EV3 Stein gedruckt wird. Wird der obere Knopf gedrückt, soll der Roboter zum Krankenhaus, in allen anderen Fällen zur Schule fahren. Beide Wege sind gleichzeitig zum implementieren! Das Ziel soll angezeigt werden. hochschule mannheim

Die if – else Anweisung

```
if(Ausdruck){
    Anweisung
    ...
    Anweisung
}
else{
```

```
Anweisung
```

```
…
Anweisung
```

```
}
```

Wenn der Ausdruck erfüllt ist, so werden die Anweisungen im if-Block erfüllt, ansonsten die Anweisung im else-Block.

```
Beispiel:
```

```
if(a==10){
    Anweisung
    ...
    Anweisung
}
else{
    Anweisung
    ...
    Anweisung
    ...
    Anweisung
```


C- CODE Bespiel für if – else Anweisung

Das Programm zeigt an, ob der Weg 1 oder der Weg 2 genommen werden soll. Der Weg 1, soll genommen werden, wenn der linke Button auf dem EV3 Stein gedrückt wurde. In allen anderen Fällen der Weg 2.

```
task main()
 1
 2
       Ł
 3
         waitForButtonPress();
 4
         if(getButtonPress(LEFT BUTTON) ==1)
 5
 6
           displayTextLine(1, "Weg 1");
 7
           sleep(2000);
 8
         }
 9
         else
10
11
           displayTextLine(1, "Weg 2");
12
           sleep(2000);
13
         }
14
       }
15
```


getButtonPressed Anweisung

getButtonPress

Gibt zurück, ob ein
bestimmter Button
gedrückt wurde.

	bool getButtonPress(tEV3Buttons button)		
Parameter	Explanation	Data Type	
Return Type	The function returns a boolean value.	bool	
button	The EV3 button to be checked.	tEV3Buttons	
param2	Description of parameter 2.	long	

- Returns whether the specified button is pressed or not
 - Pressed buttons will return a value of 1
 - Released buttons will return a value of 0
- The button mapping can be found below:

buttonNone:	No button (0)
buttonUp:	Up button (1)
buttonEnter:	Enter button (2)
buttonDown:	Down button (3)
buttonRight:	Right button (4)
buttonLeft:	Left button (5)
buttonBack:	Back button (6)
buttonAny:	Any button (7)

Aufgabe 4: if ... else Abfrage Der Roboter soll entweder zum Krankenhaus oder zur Schule fahren

Start: Parkplatz am Haus

Ende: Parkplatz Krankenhaus bzw. Ein- und Ausstiegsfeld an der Schule

Oben

Aufgabe 4+: Erweiterung von Aufgabe4

Start: Parkplatz am Haus

Ende: Parkplatz Krankenhaus bzw. Ein- und Ausstiegsfeld an der Schule

Erweitern Sie das Programm von Aufgabe 4, so dass

a) Die Auswahl zweifach ausgeführt werden kann

b) Die Auswahl beendet wird, wenn die mittlere Taste gedrückt wird. Realisieren Sie dies mit einer while-Schleife und berücksichtigen Sie die mittlere Taste in Ihrer if-Abfrage!

Aufgabe 5: switch

Start: Parkplatz am Haus

Taste Oben: Parkplatz Krankenhaus Taste Links: Ein- und Ausstiegsfeld an der Schule Taste Rechts: Ladenstraße Taste Unten: Berghütte

Schreiben Sie ein Programm, das den Roboter in Abhängigkeit der gedrückten Taste, zu einem bestimmten Ort fahren lässt. Verwenden Sie dazu einen switch. Die Fahrwege sind als einzelne Tasks zu deklarieren!

C Code

switch

```
switch(button)
{
  case 1: startTask(anzeige1);
   break;
  case 2: startTask(anzeige2);
   break;
  case 3: startTask(anzeige3);;
   break;
  default: displayTextLine(3, "nicht");
   break;
}
```


C Code

Deklaration von Tasks

```
task anzeige1()
{
    displayTextLine(3, "oben");
}
```


Aufgabe 5: switch

Start: Parkplatz am Haus

Taste Oben: Parkplatz Krankenhaus Taste Links: Ein- und Ausstiegsfeld an der Schule Taste Rechts: Ladenstraße Taste Unten: Berghütte

Schreiben Sie ein Programm, das den Roboter in Abhängigkeit der gedrückten Taste, zu einem bestimmten Ort fahren lässt. Verwenden Sie dazu einen switch. Die Fahrwege sind als einzelne Tasks zu deklarieren!

Die Legostadt

Der Roboter braucht ein Update mit Sensoren! - Bitte ans Laborpersonal wenden! -

Aufgabe S1: Fahrt zum Parkplatz Berghütte – Automatisches Anhalten mittels Tastsensor

Start: Parkplatz Bahnhof

Ende: Parkplatz Berghütte

Der Roboter soll vom Bahnhof zur Berghütte fahren. Mittels Tastsensor soll er selbständig anhalten, sobald der Tastsensor die Mauer vor dem Parkplatz berührt.

Die while Schleife

...........

1. Unendliche while Schleife

Eine Anweisung bzw. eine Folge von Anweisungen soll unendlich oft wiederholt werden.

```
while(true)
{
    Anweisung
    ...
    Anweisung
}
```


Beispiel für unendliche while Schleife

Das Wort Hello wird solange angezeigt, bis das Programm abgebrochen wird.

.............

```
1
 2
        task main()
 3
        £
 4
 5
          while(true)
          £
 6
             displayTextLine(1, "Hello");
 7
 8
          }
 9
        }
10
```


Die while Schleife

2. Endliche while Schleife

Eine Anweisung bzw. eine Folge von Anweisungen soll bis zu eine bestimmten Bedingung nicht mehr erfüllt is, wiederholt werden.

```
while(Bedingung)
{
    Anweisung
    ...
    Anweisung
}
```

Beispiele für Bedingungen: i==3; pressed == true; i<=5; pressed!=false; hochschule mannheim

DAS LEGO[®] MINDSTORMS[®] System Berührungssensor / Tastsensor

- Abfrage, ob Sensor gedrückt
- Werte des Sensors
 - 0: Sensor nicht gedrückt
 - 1: Sensor gedrückt

Beispiel für Nutzung des Tastsensors mittels endlicher while Schleife

1. Sensor Setup durchführen

tors and Sensors Setup			
tandard Models Motors Sensors			
Sensor Index Name	Sensor Type	Sensor Mode	
S1 Taster1	Touch (EV3)	Touch	•
S2	No Sensor	▼ Not Applicable	•
S3	No Sensor	Not Applicable	•
S4	No Sensor	▼ Not Applicable	•
		OK	brechen Übernehmen Hilf

Beispiel für Nutzung des Tastsensors mittels endlicher while Schleife

getTouchValue

............

	bool getTouchValue(tSensors nDeviceIndex)		
Parameter	Explanation	Data Type	
Return Type	The function returns a boolean value.	bool	
nDeviceIndex	A sensor port or name.	tSensors	

- Returns the value of the Touch Sensor plugged into nDeviceIndex
 - A logical 1 is returned if the Touch Sensor is pressed
 - A logical 0 is returned if the Touch Sensor is not pressed (released)

Show Code Sample

© Robomatter Inc, 9/25/2015

Beispiel für Nutzung des Tastsensors mittels endlicher while Schleife

```
#pragma config(Sensor, S1, Taster1, sensorEV3 Touch)
 1
 2
      //*!!Code automatically generated by 'ROBOTC' configuration wizard
 3
      task main()
 4
                                              Das Wort Hello wird
 5
      ł
 6
                                              solange angezeigt, bis
 7
        while(getTouchValue(S1)==0)
                                              der Tastsensor am Port
 8
        £
                                              S1 gedrückt wird.
 9
          displayTextLine(1, "Hello");
10
        }
11
12
      ÷.
```

" hochschule mannheim

Legostadt

Aufgabe S2

Aufgabe S2: Fahrt zum Meer – Automatisches Anhalten mittels Ultraschallsensor

Start: Parkplatz Schule

Ende: Parkplätze Leuchtturm / Strandhütte

Der Roboter soll von der Schule zum Meer fahren. Mittels Ultraschallsensor soll er selbständig anhalten, sobald ein geeigneter Abstand von den Mauern um die Parkplätze am Meer (Leuchtturm, Strandhütte) erreicht ist.

DAS LEGO[®] MINDSTORMS[®] System Ultraschallsensor

- Sensor sendet Ultraschall aus
- Schall wird von Hindernis reflektiert
- Reflektierter Schall wird vom Empfänger registriert
- Aus Laufzeit des Schalls kann auf die Entfernung geschlussfolgert werden
- Messwerte werden in cm ausgegeben

Abfrage Ultraschallsensors

getUSDistance(Sensor)

Beispiel für Nutzung des Ultraschallsensors

```
#pragma config(Sensor, S2, , sensorEV3_Ultrasonic)
#pragma config(Motor, motorB, MotorRechts, tmotorEV3 Lar
                                                           tmotorEV3 Large, PIDControl, driveRight, encoder)
#pragma config(Motor, motorC, MotorLinks, tmotorEV3 Large, PIDControl, driveLeft, encoder)
//*!!Code automatically generated by 'ROBOTC' configuration wizard
                                                                                     !!*//
```

```
task main()
```

Ł

{

```
// vorwaerts fahren
setMotorSpeed(motorB,70);
setMotorSpeed(motorC,70);
```

while(getUSDistance(S2)>10)

```
setMotorSpeed(motorB,0);
setMotorSpeed(motorC,0);
```

Der Motor fährt vorwärts bis ein Hindernis in ca. 10 cm Entfernung detektiert wird.

Aufgabe S2: Fahrt zum Meer – Automatisches Anhalten mittels Ultraschallsensor

Start: Parkplatz Schule

Ende: Parkplätze Leuchtturm / Strandhütte

Der Roboter soll von der Schule zum Meer fahren. Mittels Ultraschallsensor soll er selbständig anhalten, sobald ein geeigneter Abstand von den Mauern um die Parkplätze am Meer (Leuchtturm, Strandhütte) erreicht ist.

Aufgabe S3: Einkaufen – Halten am richtigen Geschäft mittels Farbsensor

Start: Parkplatz Bahnhof

Ende: Geschäft

Der Roboter soll vom Bahnhof in die Einkaufsstraße fahren und beim Cafe (Pfeiltasten oben), der Post (Pfeiltasten links) oder der Zoofachgeschäft (Pfeiltasten rechts) halten. Die Parkflächen sind verschieden farbig markiert. Ermöglichen Sie ein mehrfaches Auswählen!

DAS LEGO[®] MINDSTORMS[®] System Colorsensor

- Verfügt über mehrere Moden, z. B.
 - Bestimmung des Farbwertes (ColorID)
 - Bestimmung der reflektierten Helligkeit
- Zur Ausleuchtung kann eine LED eingeschaltet werden

DAS LEGO[®] MINDSTORMS[®] System Colorsensor – ColorID Mode

- Bestimmung der Farbe
- Jede Farbe hat einen Wert
- Werte für EV3 Colorsensor

	Color name	Enumerated Value
colorNone:	No object is detected by the color sensor	0
colorBlack:	A black object is detected by the color sensor	1
colorBlue:	A blue object is detected by the color sensor	2
colorGreen:	A green object is detected by the color sensor	3
colorYellow:	A yellow object is detected by the color sensor	4
colorRed:	A red object is detected by the color sensor	5
colorWhite:	A white object is detected by the color sensor	6
colorBrown:	A brown object is detected by the color sensor	7

C Code Colorsensor – ColorID Mode

getColorName

	TLegoColors getColorName(tSensors nDeviceIndex)		
Parameter	Explanation	Data Type	
Return Type	Returns the current color value of the color sensor attached to nDeviceIndex.	TLegoColors	
nDeviceIndex	A sensor port or name.	tSensors	

- One of 8 different color names will be returned, depending on the color of the object detected.
- If no color is detected, colorNone will be returned instead.

Beispiel: Anzeige der ColorID Colorsensor – ColorID Mode

Sensor Setup

Motors and Sensors Setup						
Standard Models Motors Sensors						
Sensor Index Name	Sensor Type	Sensor Mode				
S1	No Sensor 👻	Not Applicable 👻				
S2 Color1	Color (EV3) 🗸	Color				
S3	No Sensor 👻	Not Applicable 👻				
S4	No Sensor 👻	Not Applicable 👻				

Beispiel: Anzeige der ColorID Colorsensor – ColorID Mode

```
#pragma config(Sensor, S2, Color1,
 1
                                                   sensorEV3 Color, modeEV3Color Color)
 2
      //*!!Code automatically generated by 'ROBOTC' configuration wizard
                                                                                     !!*//
 3
 4
      task main()
 5
      -{
 6
        string farbe;
 7
        while(true)
 8
        {
 9
                                                                   Die ColorID wird
10
          if(getColorName(S2) == colorBlack)
11
          Ł
                                                                   abgefragt und sofern
12
            farbe = "Black";
13
          3
                                                                   schwarz erkannt wird,
14
          else
15
          -{
                                                                   dies angezeigt.
16
            farbe = "Nicht hinterlegt";
17
          3
18
          displayTextLine(1, farbe);
          displayTextLine(2, "Druecke eine Taste");
19
20
          waitForButtonPress();
21
        3
22
23
24
25
```


DAS SPIELFELD: Legostadt

Aufgabe S3: Einkaufen – Halten am richtigen Geschäft mittels Farbsensor

Start: Parkplatz Bahnhof

Ende: Geschäft

Der Roboter soll vom Bahnhof in die Einkaufsstraße fahren und beim Cafe (Pfeiltasten oben), der Post (Pfeiltasten links) oder der Zoofachgeschäft (Pfeiltasten rechts) halten. Die Parkflächen sind verschieden farbig markiert. Ermöglichen Sie ein mehrfaches Auswählen!

