Fakultät für Informatik, Institut für Robotik Laborpraktikum I Legorobotik – graphische Programmierung Ute Ihme

Hochschule Mannheim | Ute Ihme

DAS LEGO[®] MINDSTORMS[®] System Das EV3 System

Prinzip von LEGO® MINDSTORMS®

- Roboter wird gebaut mit
 - programmierbarem LEGO[®] Stein
 - bis zu 4 Motoren oder Lampen
 - bis zu 4 Sensoren
 - ➢ LEGO[®] TECHNIC Teile
- Erstellung eines Steuerprogramms am Computer
- Übertragen des Programms auf den Roboter
- Testen des Programms

DAS LEGO® MINDSTORMS® System

Motoren

Quelle: Lego

Motoren werden an die Anschlüsse A, B, C und D angeschlossen.

Servomotor

- Verfügt über integrierten
 Rotationssensor
 - misst Geschwindigkeit und Abstand
 - Leitet Ergebnisse an NXT Stein weiter
- Motor kann auf einen Grad genau gesteuert werden
- Kombinationen mehrerer Motoren möglich
 - arbeiten ggf. mit gleicher
 Geschwindigkeit

DAS LEGO® MINDSTORMS® System

Standardsensoren

DAS LEGO® MINDSTORMS® System

Berührungssensor / Tastsensor

- Abfrage, ob Sensor gedrückt
- Werte des Sensors
 - 0: Sensor nicht gedrückt
 - 1: Sensor gedrückt

DAS LEGO® MINDSTORMS® System

Ultraschallsensor

- Sensor sendet Ultraschall aus
- Schall wird von Hindernis reflektiert
- Reflektierter Schall wird vom Empfänger registriert
- Aus Laufzeit des Schalls kann auf die Entfernung geschlussfolgert werden
- Messbereich: 3 bis 250 cm
- Messgenauigkeit: +/- 1 cm

DAS LEGO[®] MINDSTORMS[®] System

Colorsensor

- Verfügt über mehrere Moden, z. B.
 - Bestimmung des Farbwertes (ColorID)
 - Bestimmung der reflektierten Helligkeit
- Zur Ausleuchtung kann eine LED eingeschaltet werden

hochschule mannheim

DAS LEGO[®] MINDSTORMS[®] System Colorsensor – ColorID Mode

1				
	\mathbf{h}			
1		-		
	V	6	7	

- Bestimmung der Farbe
- Jede Farbe hat einen Wert
- Werte für EV3 Colorsensor

	Wert	Farbe	*	
	-1	keine	- Martin	
	0	Rot	11.	
	1	Grün		
	2	Blau		
	3	Gelb		
	4	Magenta		
	5	Orange		
	6	Weiß		
	7	Schwarz		
	8	Pink		
	9	Grau		
	10	Hellgrau		
	11	Dunkelgrau		
	12	Zyan		
	13	Braun		

DAS LEGO® MINDSTORMS® System

Colorsensor – ambient Light Mode

- Messung der Helligkeit mittels Fotodiode
- Helle Fläche reflektiert mehr Licht als dunkle
- Messbereich:
 - 0: dunkel
 - 100: hell
- Zur Ausleuchtung kann eine LED eingeschaltet werden

Die graphische Programmieroberfläche für EV3

Erste Schritte

Starten von Lego Mindstorms Education EV3

Die graphische Programmieroberfläche für EV3 Erste Schritte

hochschule mannheim

...........

Die graphische Programmieroberfläche für EV3

Hinweise zur Bearbeitung der Praktikumsaufgaben

- Jede Aufgabe des Spielfeldes ist eine eigenständige Aufgabe.
 D. h. jede Aufgabe kann einzeln gelöst werden und muss nicht mit anderen Aufgaben kombiniert werden.
- Beim Programmieren wird am besten den EV3 immer über USB Kabel mit Rechner verbinden
 - → Ports für Motoren und Sensoren werden automatisch gesetzt

hochschule mannheim

Graphische Programmierung EV3

Wichtige Elemente – Grüne Palette

Bildschirmanzeige

Graphische Programmierung EV3

Wichtige Elemente – Orange Palette

Graphische Programmierung EV3

Wichtige Elemente – Gelbe Palette

Blöcke werden benötigt zur Abfrage von Sensorwerten

Graphische Programmierung EV3

Wichtige Elemente – Rote Palette

Variablen

Zufallszahl

Graphische Programmierung EV3

EV3 Dialogfeld

Systeminformationen

Motoren und Sensorenbelegung

 Image: Constraint of the second se

Herunterladen des Programms auf den EV3-Stein

Graphische Programmierung EV3

Erste Schritte: Bildschirmanzeigen

DAS SPIELFELD: Legostadt

Aufgabe 1: Fahrt zum Flughafen

Start: P1 Ende: Flughafenhalle Der Roboter soll aus P1 zum Parkfläche am Flughafen fahren.

Ziel:

Lernen der Steuerung des Roboters.

- Geradeausfahren
- Kurvenfahren

DAS SPIELFELD: Legostadt

Motorsteuerung

DAS SPIELFELD: Legostadt

Aufgabe 1: Fahrt zum Flughafen

Start: P1 Ende: Flughafenhalle Der Roboter soll aus P1 zum Parkfläche am Flughafen fahren.

Ziel:

Lernen der Steuerung des Roboters.

- Geradeausfahren
- Kurvenfahren

DAS SPIELFELD: Legostadt

Aufgabe 2: Fahrt zum Krankenhaus auf verschiedenen Wegen

Start: P2

Ende: Parkfläche Krankenhaus

Der Roboter soll von P2 aus über 2 verschiedene Weg zum Krankenhaus fahren. Die Auswahl des Weges ist abhängig vom gedrückten Knopf des

EV3 Steines.

Knopf Oben: über Cafe

alle anderen: über Hotel

DAS SPIELFELD: Legostadt

hochschule mannheim

DAS SPIELFELD: Legostadt

Aufgabe 2: Fahrt zum Krankenhaus auf verschiedenen Wegen

Start: P2 Ende: Parkfläche Krankenhaus Der Roboter soll von P2 aus über 2 verschiedene Weg zum Krankenhaus fahren. Die Auswahl des Weges ist abhängig vom gedrückten Knopf des EV3 Steines. Knopf Oben: über Cafe alle anderen: über Hotel

DAS SPIELFELD: Legostadt

Aufgabe 3: Beförderung von Fahrgästen zwischen Flughafen und Hotel

Start und Ende: Parkfläche Flughafen

Der Roboter soll als Shuttlebus Gäste zwischen Flughafen und Hotel hin und zurück befördern. An jedem Ort warten 3 Gäste. Es soll jeweils ein Gast transportiert werden.

Der Roboter startet per Knopfdruck, wenn der Gast eingestiegen ist. Der Roboter fährt die Strecke vom Flughafen zum Hotel vorwärts. Lässt den Gast ein- und aussteigen und fährt nach Knopfdruck die gleiche Strecke rückwärts zurück.

(Realisierung mit einer Schleife)

Auf den Parkflächen darf der Roboter neu ausgerichtet werden!

DAS SPIELFELD: Legostadt

Die for-Schleife

hochschule mannheim

DAS SPIELFELD: Legostadt

Aufgabe 3: Beförderung von Fahrgästen zwischen Flughafen und Hotel

Start und Ende: Parkfläche Flughafen

Der Roboter soll als Shuttlebus Gäste zwischen Flughafen und Hotel hin und zurück befördern. An jedem Ort warten 3 Gäste. Es soll jeweils ein Gast transportiert werden.

Der Roboter startet per Knopfdruck, wenn der Gast eingestiegen ist. Der Roboter fährt die Strecke vom Flughafen zum Hotel vorwärts. Lässt den Gast ein- und aussteigen und fährt nach Knopfdruck die gleiche Strecke rückwärts zurück.

Auf den Parkflächen darf der Roboter neu ausgerichtet werden!

DAS SPIELFELD: Legostadt

Aufgabe 4: Einparken mittels Tastsensor

- Start: Parkfläche vor Hotel
- Ende: P3
- Der Roboter soll rückwärts einparken. Er soll anhalten, wenn der Tastsensor die Bande berührt.
- (Realisierung ohne Warte-Block; nur mit Schalter und Schleife)

DAS SPIELFELD: Legostadt

Berührungssensor / Tastsensor

- Abfrage, ob Sensor gedrückt
- Werte des Sensors
 - 0: Sensor nicht gedrückt
 - 1: Sensor gedrückt

DAS SPIELFELD: Legostadt

Abfrage Berührungssensor

Analog können alle anderen Sensoren abgefragt werden.

DAS SPIELFELD: Legostadt

Aufgabe 4: Einparken mittels Tastsensor

Start: Parkfläche vor Hotel

Ende: P3

Der Roboter soll rückwärts einparken. Er soll anhalten, wenn der Tastsensor die Bande berührt.

DAS SPIELFELD: Legostadt

Aufgabe 5: Einparken mittels Ultraschallsensor

- Start: Parkfläche Schule
- Ende: P1 Garage

Der Roboter holt einen Schüler ab. Dabei parkt er selbstständig in die Garage ein. Er soll stehenbleiben, wenn der Abstand zur Wand kleiner als 5 cm ist. Dabei soll der Roboter die aktuelle Entfernung anzeigen.

DAS SPIELFELD: Legostadt

Ultraschallsensor

- Sensor sendet Ultraschall aus
- Schall wird von Hindernis reflektiert
- Reflektierter Schall wird vom Empfänger registriert
- Aus Laufzeit des Schalls kann auf die Entfernung geschlussfolgert werden
- Messbereich: 3 bis 250 cm
- Messgenauigkeit: +/- 1 cm

DAS SPIELFELD: Legostadt

Abfrage Sensorwerte

DAS SPIELFELD: Legostadt

Aufgabe 5: Einparken mittels Ultraschallsensor

Start: Parkfläche Schule Ende: P1 – Garage

Der Roboter holt einen Schüler ab. Dabei parkt er selbstständig in die Garage ein. Er soll stehenbleiben, wenn der Abstand zur Wand kleiner als 5 cm ist. Dabei soll der Roboter die aktuelle Entfernung anzeigen.

DAS SPIELFELD: Legostadt

Aufgabe 6: Ausflugsziel

Start: P4

Ende: entsprechendes Farbfeld

Der Roboter soll in Abhängigkeit von ermittelten Farbe am entsprechenden Ausflugsziel anhalten. Das Farbfeld wird über eine Zufallszahl ermittelt (siehe Folie73). Die Zufallszahl soll angezeigt werden.

- 0 Gelb (Farb-ID: 3)
- 1 Blau (Farb-ID: 2)
- 2 Schwarz (Farb-ID: 7)
- 3 Rot (Farb-ID: 0)

hochschule mannheim

DAS SPIELFELD: Legostadt

Colorsensor – ColorID Mode

1	

- Bestimmung der Farbe
- Jede Farbe hat einen Wert
- Werte für EV3 Colorsensor

	Wert	Farbe		
	-1	keine		
	0	Rot		
	1	Grün		
	2	Blau		
	3	Gelb		
	4	Magenta		
	5	Orange		
	6	Weiß		
	7	Schwarz		
	8	Pink		
	9	Grau		
	10	Hellgrau		
	11	Dunkelgrau		
12		Zyan		
	13	Braun		

DAS SPIELFELD: Legostadt

Zufallszahl erzeugen und Arbeit mit Variablen

DAS SPIELFELD: Legostadt

Aufgabe 6: Ausflugsziel

Start: P4

Ende: entsprechendes Farbfeld

Der Roboter soll in Abhängigkeit von ermittelten Farbe am entsprechenden Ausflugsziel anhalten. Das Farbfeld wird über eine Zufallszahl ermittelt (siehe Folie 73). Die Zufallszahl soll angezeigt werden.

- 0 Gelb (Farb-ID: 3)
- 1 Blau (Farb-ID: 2)
- 2 Schwarz (Farb-ID: 7)
- 3 Rot (Farb-ID: 0)

DAS SPIELFELD: Legostadt

Aufgabe 7: Folge dem Weg zum Leuchtturm

Start: P3

Ende: Gelbes Feld beim Leuchtturm Der Roboter soll der schwarzen Linie zum Leuchtturm folgen. Der Roboter soll anhalten, sobald das Endfeld (gelb) erreicht ist.

