
Analyzing Source Code for Automated Design Pattern
Recommendation

Oliver Hummel
Mannheim University of Applied Sciences

Mannheim, Germany
o.hummel@hs-mannheim.de

Stefan Burger
Siemens Corporate Technology

Munich, Germany
burgerstefan@siemens.com

ABSTRACT
Mastery of the subtleties of object-oriented programming languages
is undoubtedly challenging to achieve. Design patterns have been
proposed some decades ago in order to support software engineers
in overcoming recurring challenges in the design of object-oriented
software systems. However, given that dozens if not hundreds of
patterns have emerged so far, it can be assumed that their mastery
has become a serious challenge in its own right. In this paper, we
describe a proof of concept implementation of a recommendation
system that aims to detect opportunities for the Strategy design
pattern that developers have missed so far. For this purpose, we
have formalized natural language pattern guidelines from the liter-
ature and quantified them for static code analysis with data mined
from a significant collection of open source systems. Moreover, we
present the results from analyzing 25 different open source systems
with this prototype as it discovered more than 200 candidates for
implementing the Strategy pattern and the encouraging results of
a preliminary evaluation with experienced developers. Finally, we
sketch how we are currently extending this work to other patterns.

CCS CONCEPTS
• Software and its engineering→ Patterns;

KEYWORDS
Design Patterns, Recommendation System, Code Analysis
ACM Reference Format:
Oliver Hummel and Stefan Burger. 2017. Analyzing Source Code for Auto-
mated Design Pattern Recommendation. In Proceedings of 3rd International
Workshop on Software Analytics, Paderborn, Germany, September 4, 2017
(SWAN’17), 7 pages.
https://doi.org/10.1145/3121257.3121259

1 INTRODUCTION
Design Patterns [14] are both a blessing and a curse – a blessing
because patterns are expected to improve source code in several
aspects like flexibility, readability etc., and a curse since the grow-
ing number of available patterns [24] has made the recognition of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SWAN’17, September 4, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5157-7/17/09. . . $15.00
https://doi.org/10.1145/3121257.3121259

opportunities for using them a serious challenge in its own right.
Even worse, a potentially incorrect use of patterns may even have a
negative effect on source code quality [13]. Hence it is crucial that
developers applying patterns not only have a lot of experience in
dealing with them, but also a thorough understanding of applica-
tion structure and behavior. The increasing complexity of software
development projects and a steadily growing demand for develop-
ment personnel in today’s digitized world, are just two factors that
illustrate how helpful an automated tool could become in this con-
text, especially to support inexperienced developers in mastering
the subtleties of object-oriented programming and design so that
they will be able to build more sustainable software systems.

To date, however, as we will describe in more detail in the fol-
lowing section, there are merely few publications dealing with the
challenge of supporting developers to spot opportunities for the
use of patterns. Consequently, recognizing source code that would
benefit from a design pattern, still remains a task that is largely
based on the experience of architects and developers working on
a system under development. Based on the definition of the refac-
toring community [10] where a "code smell" describes a problem
in the code on the class level (such as an overly long or misplaced
method), we will call a problem in the design (i.e. typically impact-
ing more than one class) that e.g. might hinder future extensibility
of a system a "design smell" throughout this paper. Inspired by the
recent trend towards automating support for various software de-
velopment activities with so-called recommendation systems [25],
we have been developing a tool that aims on detecting such design
smells in Java-based software systems in order to identify opportu-
nities for the use of patterns. This prototype integrates seamlessly
into common development environments (as a PMD [26] plugin)
and points developers directly to those hotspots in their code where
the use of a design pattern [14] – namely the Strategy pattern –
would improve code quality. In order to avoid "over engineering"
the code in cases of low complexity, we have carried out an analysis
that allows quantifying the urgency of a recommendation on three
different levels.

We describe in this paper, how we derived the rules and thresh-
olds we use in PMD in order to identify the "lack of Strategy pattern"
design smell, by mining a large source code collection for pattern
instances. Moreover, in order to get a first impression of the capa-
bilities the tool we have developed, we present results of examining
25 open source projects (cf. Appendix A) for lack of Strategy design
smells. The relatively large number of over 200 smells found during
this evaluation is clearly a striking argument to investigate pattern
recommendation approaches further in the near future. The remain-
der of this paper is structured as follows, first we briefly discuss
the state of the art in improving source code quality without and

8

https://doi.org/10.1145/3121257.3121259
https://doi.org/10.1145/3121257.3121259

SWAN’17, September 4, 2017, Paderborn, Germany O. Hummel and S. Burger

with design patterns in section 2, before we go into the technical
foundations of our approach in section 3. The approach itself is pre-
sented in section 4. The following section 5 explains the evaluation
we have run on open source projects and discusses its results. The
subsequent section 6 discusses ongoing work and ideas how future
work could extend our approach. The last section summarizes all
results and concludes our contribution.

2 STATE OF THE ART
In the following two subsectionswe briefly discuss the relevant state
of the art of measuring and improving internal software quality
with metrics, refactoring and design patterns.

2.1 Software Quality and Refactoring
As it plays an important role in e.g. the extensibility and future
maintainability of a software system, the quality of source code has
been in the focus of software engineering researchers for decades.
Due to the large number of related publications, however, this topic
can be only discussed very briefly in this work. The approach with
the longest history in this area is probably the use of software met-
rics as already proposed back in the 1970s [12]. Software metrics
were then considered as an easy measure for capturing the com-
plexity of a piece of software. However, since then, it has become
apparent that software is not that simple and a non-selective op-
timization of software metrics is normally not expedient [18], [6],
[19], [28]. Moreover, even formerly promising code quality models
such as the Maintainability Index [7] have been found not being
considerably useful at all. Still, there is little empirical evidence
that more recent software quality models utilizing a combination of
metrics will actually help in improving source code, although there
seems to be some anecdotal evidence that such models can give at
least a helpful indication on the overall complexity of a software
system [23].

Two related approaches that keep experiencing an increasing
usage in practice though, are code analysis tools like Findbugs
[21] or PMD [26], and Refactoring [10] as popularized by the agile
community. There are various anecdotal reports describing helpful
feedback from both of them (such as [4], [27]), and since both
focus on detecting and fixing common bad coding practices, it
seems logical that their routine use can improve the overall code
quality. Moreover, there are a number of research works that aim
on automatically detecting the code smells that Fowler discussed
in his seminal book on refactoring [10]. A recent survey of Dallal
[1] shows an increasing number of works that have been aiming
on automating this task in the last ten years. The work of Tsantalis
et al. [31] may be considered as one example where the authors
presented a tool that suggests methods to be moved to other classes
in order to increase cohesion and reduce coupling in a system.
However, these efforts are all focused on the rather fine-grained
refactorings as popularized by Fowler and fully ignore larger-scale
design issues so far.

2.2 Design Patterns
On this higher abstraction level, design patterns [14] are also a
well-known approach aiming to improve the code quality of soft-
ware systems. In contrast to the rather fine-grained refactorings

discussed before, they are typically more complex, as using them
normally impacts a number of classes and therewith the design of
a system (hence the name). Their idea of collecting proven solu-
tions for common design problems has also been around for more
than twenty years: the well-known and seminal pattern catalog
by the Gang of Four (GoF: Gamma, Helm, Johnson, Vlissides) [14],
for example, was published in 1994 already. A pattern description
contained there consists of four essential elements, namely:

(1) Pattern Name: a clear and concise name for the pattern
(2) Problem Description: gives the context in which a pattern is

considered useful
(3) Solution: an abstract description how a pattern can help

solving the problem, which nevertheless needs to be adapted
for every concrete case

(4) Consequences: explains how the use of a pattern influences
the system under development

Since the publication of the GoF book, numerous works on
various aspects of patterns have been published. For example, re-
searchers investigated the dissemination of patterns in existing
systems [11], [3], which, however, it is not a trivial undertaking
due to the numerous difficulties arising when it comes to actu-
ally recognizing patterns in code. Hence, these works developed
heuristics (such as identifying pattern names in commits to version
control repositories) for identifying the patterns in the first place.
Unfortunately, these heuristics still remain rather fuzzy, so that the
results of most of these works remain vague and hard to compare
with each other. One more sophisticated approach has recently
been presented by Tsantalis et al. [30]. The tool developed by the
authors transforms the code to be analyzed as well as patterns to
be recognized into a graph and uses a graph similarity algorithm
claim to recognize even patterns that are not fully implemented by
the book. Recent tools for recognizing patterns in code include e.g.
"Pattern4" [31] or the pattern detection tool developed by Tsantalis
et al., which is available from his website.

Given all the praise that patterns have received in recent decades,
one would expect a significant number of studies investigating the
effects of patterns on source code quality. However, beyond the
above-mentioned discussion of consequences by the GoF already,
merely a handful of mostly partial works has been published in
this direction (e.g. [13], [20]). The distillable message from these
efforts is threefold: first, it seems that patterns indeed have the po-
tential for improving code quality, but only when they are applied
correctly. Second, incorrect implementations of patterns do happen
in practice and make a system design and its associated source
code even harder to grasp. This again underlines the necessity of
supporting developers in dealing with the correct selection and
application of patterns. The third important aspect that has unfor-
tunately only been partially investigated so far (e.g. by Jafaar et
al. [15]), is the question whether the use of patterns always makes
sense. As patterns induce overhead (such as additional classes) into
a system, their use is probably only helpful when a certain degree
of complexity has been reached. Consequently, the need for using
a pattern might in some cases only arise after a system has been
extended and might not have been apparent when its initial design
was created.

9

Analyzing Source Code for Automated Design Pattern Recommendation SWAN’17, September 4, 2017, Paderborn, Germany

Nevertheless, despite these obstacles, the promise of patterns is
clear and widely accepted in the software engineering community
today: patterns are expected to improve the long-term maintain-
ability of software system, especially when it comes to extensibility
and flexibility.

Not surprisingly, the idea of supporting developers in spotting
or avoiding design smells has been around for some time, although,
as mentioned before, the number of works in this area still remains
small. Even worse, the approaches we are aware of, are neither
working with code nor with concrete designs of a system; they
rather provide abstract guidelines [29] or question catalogs [8]
that are intended to support system designers during their work.
Such approaches obviously require a lot of manual work and with
increasing system size a growing cognitive effort, although, as a
result, they undoubtedly lead to a better understanding of a system
design. On the contrary, however, it is at least questionable whether
such upfront design considerations fit into today’s wide-spread
agile approaches [5] with their incremental approach to system
development and their idea to intertwine design, code, and even
unit test activities. Thus, we believe that a tool that recognizes
overlooked design smells, would be an ideal complement especially
(but not only) in agile development environments.

3 FOUNDATIONS
In order to prepare the reader for understanding our approach on
pattern recommendation in the following, we briefly introduce the
Strategy pattern and the PMD code analysis tool in the next two
subsections. Readers familiar with them can safely continue reading
in section 4 without any loss of information.

3.1 Strategy Pattern as Running Example
According to Gamma et al. [14], the Strategy pattern is a behavioral
pattern that "define(s) a family of algorithms, encapsulate(s) each
one, and make(s) them interchangeable." One prominent example
for its application in Java is the use of LayoutManagers in Swing
UIs. Instead of having lots of switch statements in all UI containers
for the various algorithms that are needed to arrange the elements
in the container, the required behaviors are encapsulated externally
in different LayoutManager classes. These classes are all implement-
ing a common interface so that a programmer can select a desired
concrete layout strategy for a UI container or even develop a new
one, even without touching the source code of the existing contain-
ers. This is a nice example how the design of a system can be kept
open for extension while it is closed for modification, which is also
known as the open-closed principle [22].

At this point, it is important to mention at least briefly that from
a structural perspective the class diagram of the Strategy pattern is
identical with the State pattern in the sense that the various strate-
gies in the former correspond to the states of the latter. The main
difference between the two is that state implementations have con-
trol over state changes themselves (i.e. a state determines the next
state in reply to an event), whereas changes of the applied strategy
are made when desired by the client. This is an important aspect
that we need to keep in mind for our prototype as it predetermines
a clear path for future extensions that are supposed to support the
State pattern as well.

3.2 PMD
Without any loss of generality, we have focused our proof of con-
cept on the Java programming language as it is a widespread and
well-known object-oriented language with a large body of code
analytics tools and numerous open-source projects available for
experimentation. Nevertheless, the presented approach and our
preliminary results should be transferable to other object-oriented
languages, as well as to other programming paradigms provided
that suitable patterns are available there.

One prominent example of a code analytics tool is PMD [26],
which is normally used to detect common bad programming prac-
tices (e.g. dead code or unused variables) and non-optimal code
structures (such as complex conditionals) on a statement level. It
is able to analyze source code in several different programming
languages (such as Java or C#). Its analyses are using the abstract
syntax tree (AST) of the underlying language to find the mentioned
problematic statements. Fortunately, it is relatively straightforward
to extend PMD’s functionality with new detection rules and fea-
tures through using one of the two extension points provided. The
first option allows to describe how to traverse AST nodes for the
intended analysis based on XPath queries, while the second allows
to formulate rules in Java code and hence allows to access a wide
range of functionality and other PMD interfaces.

4 APPROACH
As explained before, our working hypothesis is that it is feasible to
recognize the existence and even the exact position of design smells
in object-oriented software systems with the help of a dexterous
static analysis of that system. Our central idea is to formalize and,
where necessary extend, the guidelines well-known pattern cata-
logs are providing into detection rules that can be applied by a tool
(based upon PMD). Thus, in order to make these rules practically
applicable in PMD, two steps are necessary, namely first a "transla-
tion" from often relative vague natural language descriptions into
precise source code elements that can be found in the code’s AST;
and, second, it is necessary to analyze existing pattern implemen-
tations for complexity thresholds from which it makes sense to
use a pattern. The latter is needed as a response to the overhead
induced into a system by a pattern, which allows a developer to
make a better-informed tradeoff whether it actually makes sense
to implement a suggested pattern or rather refrain from it to avoid
over engineering (as discussed in section 2.2).

4.1 Detection Rule Derivation
As discussed before, we have chosen the Strategy pattern to evaluate
the feasibility of this approach as it is sufficiently complex, while at
the same time relatively straightforward to understand. Based on
recommendations from the literature and our analysis of numerous
Strategy examples contained there, we have distilled the following
natural language rule for the detection of Strategy opportunities
resp. the lack of Strategy design smell:

There is a significant switch statement in various methods of a
class, which always uses the same variable in its conditions and has
the same cases. Moreover, this variable is never changed in any of the
decision branches.

10

SWAN’17, September 4, 2017, Paderborn, Germany O. Hummel and S. Burger

It is important to emphasize the last sentence of this definition as
we see it as the key for a future differentiation of State and Strategy
pattern opportunities (as already discussed in Section 3.1).

The following table summarizes the formal detection rules we
have derived from the above natural language version of the prob-
lem description. The first column names the used AST attributes,
the second column gives a brief description of it, while the last
column lists the required outcome in order for the rule to fire. It is
important to understand that, as implied by the natural language
description, the individual rules need to be concatenated with a
logical AND and have to fire all in one class in order to signal a
successful smell detection.

Table 1: Derived detection rules for the Strategy pattern.

AST Attribute Description Threshold
No. of cases a switch block needs a certain number of cases >=2
No. of appearances the switch block needs to appear with identical

conditions in several methods >=2
Identical case conditions all cases in each switch block are identical true
Equal no. of cases the number of cases must be equal in all

switch statements true
Single class all method with that switch are in the

same class true
Same header attribute all switches use the same attribute in their

condition true
Header attribute not changed the value of this attribute must not change in

the case clauses true

Moreover, it is important to grasp the relation of the first two
AST attributes from Table 1 with the values we present in the
following subsection.While Table 1 describes elements from a naive
and thus "smelly" implementation (i.e. the bad case without the
Strategy pattern) we want to analyze for pattern opportunities, in
the following subsection we analyzed successful implementations
of the Strategy pattern. Thus, cases in switch blocks of the former
would be implemented as a concrete strategy in the latter and hence
the number of appearances in Table 1 corresponds with the number
of methods implemented per strategy in Figure 1 in the following
section 4.2.

4.2 Threshold Derivation
In order to better quantify the usefulness of a pattern recommen-
dation in a given system and avoid "over-engineering" a smelly
system with too many patterns, we believe it is necessary for a
human inspecting the delivered result to get a good sense of the
"intensity" of the detected smells. Thus, we decided to establish
an "intensity scale" by collecting and analyzing the values from
existing applications of the Strategy pattern in the wild. We have
used an established collection of open-source systems [17] for this
purpose. This gives us a better understanding when it makes sense
to actually use a pattern in practice. Or in other words, this is how
we collected the statistics to quantify the threshold values for the
first two detection rules presented in Table 1. As mentioned before,
finding existing pattern implementation in a given codebase is a
significant challenge in its own right. Hence, we used the following
heuristics for the identification of Strategy pattern instances: we
executed a search [16] for all Java classes in the codebase that ended
with "...Strategy" and originated from projects under version control
(thus excluding those files that were individually crawled from the

open web and hence were probably not part of a well-designed
project). This led to a total of 286 potential Strategy implementa-
tions. We manually inspected them and found 53 candidates (out
of 35 different projects) that actually fulfill the Strategy pattern
definition by Gamma et al. and the following additional constraint
that we imposed ourselves in order to avoid biasing our baseline:
we decided that a maximum of two pattern implementations should
considered per project.

All candidates were then manually inspected a second time, in
order to count the values for deriving the two necessary thresholds
for the Strategy detection rule. As apparent from Table 1, we were
interested in the number of different strategies implemented per
pattern and the number of methods per strategy.

To reiterate once more, these two values would correspond to
the number of switch blocks resp. the number of cases in a naÃŕve,
i.e. a smelly implementation that the tool is supposed to detect
later. The histogram of the values we have found is shown in the
following figure 1.

Figure 1: Distribution of number of strategies and imple-
mented methods per strategy in the analyzed pattern in-
stances.

The subsequent table 2 summarizes the statistical key figures for
the above distributions that formed the foundation for the deriva-
tion of threshold values:

Table 2: Statistical key figures for strategy pattern imple-
mentations.

No. of Strategies No. of Methods
Minimum 2.0 1.0
1. Quartile 2.0 1.0
Median 2.0 2.0
Average 3.3 3.4
3. Quartile 3.0 4.0
Maximum 13.0 25.0

11

Analyzing Source Code for Automated Design Pattern Recommendation SWAN’17, September 4, 2017, Paderborn, Germany

As a working hypothesis, we defined that we would return pat-
tern suggestions on three different recommendation levels that are
allocated to the statistical measurements as follows:

(1) Possible: >= Median
(2) Useful: >= Average
(3) Recommended: >= 3rd Quartile
This definition leads to the following matrix of recommendation

levels and their corresponding boundary values:

Table 3: Boundary values for detection of Strategy pattern
candidates.

No. of Strategies No. of Methods Rec. Level
>= 3 >= 2 Possible
>= 3 >= 3 Useful
>= 4 >= 4 Recommended

As an example, consider the LayoutManager Strategy implemen-
tation from Java Swing which was mentioned in Section 3 already:
it contains five strategies and more than ten methods and hence
would clearly fall into the "Recommended" category.

4.3 Prototypical Implementation
We have prototypically implemented the model presented above as
an extension for PMD, using its Java interface to collect the required
information from the analyzed source codes. As discussed before,
for a Strategy opportunity detection, the detection rule needs infor-
mation about switch statements and their contents from the AST.
Each required information is stored in a specific AST-node type,
together with some additional metadata. As PMD uses the visitor
pattern for walking through the AST of each class, it will make a
callback to our prototype whenever it finds one of the desired node
types. In this case, our tool is extracting all required information
and metadata from the node and, as all relevant information for a
class is needed, writes it into a database for later execution of the
next step. There, it is almost trivial to iterate over the database and
to identify those classes that trigger the detection rules presented
in Table 1.

5 EVALUATION RESULTS
In this section, we present the results yielded from executing the
Strategy smell detection with our tool prototype. The evaluation
was actually twofold. First, we analyzed 25 well-known Java open
source projects (as listed in Appendix A), comprising more than
3.6 million lines of code, with our tool, and, second, we asked 9 ex-
perienced programmers (mainly industrial developers) to evaluate
the quality of two concrete Strategy recommendations delivered
by our tool. The first investigation was giving a broad overview
whether opportunities for a Strategy pattern would be recognized
in various open source systems, while the evaluation of some ex-
emplary recommendations by experienced developers gives a good
indication for the usefulness of the delivered results.

The automated analysis of 25 open source projects (cf. Appendix
A) delivered 211 design smells, that could potentially be rectified
with the Strategy Pattern, as summarized in the following table.

Table 4: Detected Strategy smells in 25 open source projects.

Rec. Level No. of Candidates Percentage
Possible 32 15%
Useful 156 74%
Recommended 23 11%
Overall 211 100%

This makes an average of almost 9 lack of Strategy design smells
in each of the 25 open source projects taken into account. The
detailed distribution of candidates on the projects is also listed in
Appendix A.

For our evaluation of the results, we have picked two medium-
sized examples (found in ArgoUML and Apache Lucene) out of the
result set and extracted the relevant code sections, i.e. the methods
containing the switch statements our tool considered as a smell.
The nine participants of our survey had a total of 54 years of Java
experience and all claimed to have a solid knowledge of design
patterns. 6 participants were industrial developers, 3 were scientists
and 1 was a graduate student. The following table summarizes their
responses.

Table 5: Evaluation of Strategy Recommendations.

Candidate Rec. Level Helpful Very helpful Don’t Know
Strategy 1 Possible 6 1 2
Strategy 2 Useful 4 5 0

Other answering options were "not helpful" and "helpful, but too
much overhead", which were not chosen by anyone and hence are
not listed in the table for the sake of space.

5.1 Discussion
Clearly, the evaluation results presented in the previous section are
still in an intermediate state and thus faced with some threads to
validity. At the time being, this is mostly related with the internal
validity, as it is unclear whether the understanding of a design smell
that we have distilled from the literature, extended, formalized, and
implemented is completely sound and correct, although the partici-
pants of a small pilot study were rather fond with two exemplary
recommendations. Hence, it is certainly still justified to take the
relatively large number of discovered design pattern candidates
with a grain of salt.

On the other hand, as we have explained the detection rule for
this smell in great detail, it is replicable for every experienced Java
developer resp. researcher and even if one would tend to use differ-
ent thresholds, the main result of this work will remain significant:
given the large amount of Strategy design smells discovered in
current open source systems, there seems to be a clear necessity
for supporting developers with pattern recommendations.

However, as open source systems are merely a specific popula-
tion of software systems that might differentiate from industrial
closed-source systems in various aspects (such as developer experi-
ence or development process etc.), it is not clear how far the results

12

SWAN’17, September 4, 2017, Paderborn, Germany O. Hummel and S. Burger

can be generalized to other types of systems. This is a thread to
external validity that we plan to counter by analyzing a signifi-
cant closed-source enterprise system of an industrial partner (an
international insurance company).

5.2 Limitations
While working out the detection rules for further patterns in our
ongoing work, we have found that our approach is probably limited
in the sense that it is not possible to detect smells for all 23 GoF
patterns based on a static code analysis. The reason for this is that,
as far as we can tell with our current understanding, the use of
some patterns requires a conscious decision of a human, i.e. the
responsible developer. Take for example the Adapter pattern that
is helpful when it comes to interface mismatches during the inte-
gration of foreign classes or components into an existing system.
As soon as a developer tries to integrate a mismatching component
into a given system, he will receive a compiler error so that no smell
detection is necessary anymore. Beyond the Adapter pattern our
considerations yielded a similar result for the Composite and the
Interpreter pattern. The former is intended to better structure part-
whole hierarchies in code, but again requires a conscious human
decision that such a hierarchy is useful in a system. The situation
is again similar for the Interpreter pattern. It offers a template for
the construction of a simple language interpretation kit so that
users of a system can control it through a simple domain specific
language (DSL). Again, the decision for the use of a DSL within
a system is a conscious one and probably made some time before
coding begins at all. Furthermore, our approach can be considered
somewhat limited in the sense that it comes rather late in the devel-
opment lifecycle. Optimally, as the name suggests, design patterns
should be recommended during the design phase and not only after
the coding phase as making changes to a system becomes more
expensive the later a change occurs in the development process.
However, we have decided to derive our recommendations from
code for the following practical reasons: First and foremost, we
believe that our approach is still helpful (as underlined by the large
number of pattern recommendations detected in our pilot study),
since modern iterative development approaches often amalgamate
design, coding and even refactoring and unit testing with each
other (cf. e.g. [10] and Section 2.2). Hence, it makes perfect sense to
support the developer during these activities with a tool that is able
to recommend the application of design patterns. In relation to the
previous discussion of criticality of the pattern recommendation, it
should be noted that only incremental changes to a codebase might
make a naÃŕve implementation so complex that it becomes worth-
while to refactor to a pattern-based variant. The second important
aspect is, that only code gives a holistic and comprehensive view
on a system while e.g. a single UML diagram is usually not able to
provide this at a glance, since diagrams often abstract details away.
Thus, a UML-based design typically requires various perspectives
on a system that must be kept in sync with a lot of effort (cf. e.g. [2]),
which is rarely done with the necessary rigor in practice. Finally,
there is simply a lack of freely accessible and machine processable
software design documents, which we could have used for our re-
search. On the contrary, there are large amounts of source code
available in the repositories of e.g. GitHub and other open source

hosters that can be used for rule derivation and experimentation
and for replicating our results. Another clear advantage we see for
the presented approach is the fact that it can rely on various proven
code analysis tools such as PMD [26] so that we finally accepted
that our tool can be only used during programming and not already
when design activities are taking place.

6 ONGOING AND FUTUREWORK
We have been working on deriving and implementing detection
rules for further GOF patterns (namely State, Builder, Facade, Dec-
orator, and Mediator) and will report on the outcome of this effort
at a different occasion, once we have interpreted the results.

Moreover, as discussed before, we feel it is important to challenge
our potentially biased interpretation of the detection rules with the
opinions of experienced software developers, in order to fine-tune
them as well as the recommendation levels we have derived so far.
Based on the experience gained from the presented preliminary
study, we have prepared and executed an online survey with 52
professional software developers and exemplary recommendations
for all of the above-mentioned patterns. We are currently in the
process of interpreting these results as well and will also report on
them at another occasion.

As the results with our tool have been promising so far, we be-
lieve it may be worthwhile to extend our work in various directions
in the near future. First of all, even though we have already targeted
further GoF patterns, there are 17 other GoF patterns left that can
be analyzed to find out whether it is possible to automatically detect
usage recommendations for them (minus the three for which we do
not believe it is possible). Moreover, there is an enormous number
of further design patterns (as e.g. listed in the Pattern Almanach
[24]) that can potentially be covered by our approach. And, fur-
thermore, it might also make sense to investigate whether smells
for even larger-grained patterns such as those listed in Fowler’s
well-known Enterprise Pattern book [9] are also be detectable with
the help of static code analysis.

7 CONCLUSION
Driven by the complexity of an ever-growing catalog of design
patterns in software development, in this paper, we have described a
first proof of concept demonstrating how the recognition of "design
smells" in object-oriented software systems is possible with static
code analysis techniques. We defined a design smell as a hotspot
in source code that would benefit from the use of a design pattern
(although the term can certainly be used in a more general sense as
well). As a target for our feasibility study we selected the Strategy
design pattern as defined by the Gang of Four [14] and derived
formal detection rules as well as a set of recommendation levels for
it by manually analyzing 53 Strategy pattern implementations as
retrieved from an established source code collection [17].

Moreover, we implemented these detection rules in a prototype
based upon the PMD [26] code analyzer and applied them to a set of
25 well-known Java open-source projects in order to evaluate their
usefulness. In total, we have found over 200 design smells that could
be remedied by the use of the Strategy pattern. Moreover, in order
to get a more neutral view on the quality of these recommendations,
we have carried out a small pilot study with two selected Strategy

13

Analyzing Source Code for Automated Design Pattern Recommendation SWAN’17, September 4, 2017, Paderborn, Germany

pattern recommendations and got a positive feedback for them
from 9 experienced Java programmers.

Encouraged from these results, we are currently working on
analyzing the results yielded from developing detection rules for
further pattern opportunities and on interpreting results from a
larger survey with more than 50 developers that have given feed-
back for additional pattern opportunities discovered in our test set.
As far as we can tell by now, these results certainly justify to invest
further effort into our approach in the near future.

A APPENDIX
The following list contains the analyzed open source projects and
the number of found Strategy recommendations in the 4th column:

Project Version URL No. Rec.
ArgoUML 0.34 argouml-downloads.tigris.org 3
Columba 1.4 sourceforge.net/projects/columba 3
JEdit 5.2 sourceforge.net/projects/jedit 6
Lucene 4.10.3 lucene.apache.org 32
JHotDraw 5.6 sourceforge.net/projects/jhotdraw 13
Ant 1.9.4 ant.apache.org 6
Wicket 6.18.0 wicket.apache.org 1
Ganttproject 2-6-1 sourceforge.net/projects/ganttproject 1
Jrefactory 2.9.19 sourceforge.net/projects/jrefactory 3
OpenHab 1.6 sourceforge.net/projects/openhab 16
Freedomotic 5.5.0 sourceforge.net/projects/freedomotic 0
Jfreechart 1.0.19+ sourceforge.net/projects/jfreechart 1
Junit r4.12 github.com/junit-team/junit 0
Recoder 0.97 sourceforge.net/projects/recoder 7
Jenkins 1.598 github.com/jenkinsci 0
Wind 1.0.1 sourceforge.net/projects/wind 41
Derby 10.11.11 db.apache.org/derby 31
Elasticsearch 1.4.4 github.com/elastic/elasticsearch 4
Freemind 1.0.1 sourceforge.net/projects/freemind/ 1
Hibernate 4.5.2 sourceforge.net/projects/hibernate 2
Jabref 2.10 sourceforge.net/projects/jabref 0
Megamek 0.40.1 sourceforge.net/projects/megamek 34
Mina 2.0.9 mina.apache.org 0
spring-core 4.1.5 sf.net/projects/springframework 3
Triplea 1.8.0.5 sourceforge.net/projects/triplea 3

REFERENCES
[1] Jehad Al Dallal. 2015. Identifying refactoring opportunities in object-oriented

code: A systematic literature review. Information and Software Technology 58
(2015).

[2] C Atkinson, J. Bayer, and C. et al. Bunse. 2002. Component-based product line
engineering with UML. Pearson.

[3] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta. 2007. An
empirical study on the evolution of design patterns. In Proceedings of the the
6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. ACM.

[4] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and YuQian
Zhou. 2007. Using findbugs on production software. In Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and applica-
tions. ACM.

[5] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, et al. 2001.
Manifesto for agile software development. (2001).

[6] Stefan Burger and Oliver Hummel. 2012. Applying maintainability oriented soft-
ware metrics to cabin software of a commercial airliner. In Software Maintenance
and Reengineering (CSMR), 16th European Conference on. IEEE.

[7] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. 1994. Using metrics to
evaluate software system maintainability. Computer 27, 8 (1994).

[8] Zoya Durdik and Ralf Reussner. 2012. Position paper: approach for architectural
design and modelling with documented design decisions. In Proceedings of the
8th international ACM SIGSOFT conference on Quality of Software Architectures.
ACM.

[9] Martin Fowler. 2002. Patterns of enterprise application architecture. Addison-
Wesley.

[10] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley.

[11] Michael Hahsler. 2003. A quantitative study of the application of design patterns
in Java. (2003).

[12] Maurice Halstead. 1977. Elements of software science. Elsevier.
[13] Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. 2012. Myth

or reality? analyzing the effect of design patterns on software maintainability.
Computer Applications for Software Engineering, Disaster Recovery, and Business
Continuity (2012).

[14] R. Johnson E. Gamma J. Vlissides, R. Helm. 1995. Design patterns: Elements of
reusable object-oriented software. Addison-Wesley.

[15] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, Foutse Khomh, and Moham-
mad Zulkernine. 2016. Evaluating the impact of design pattern and anti-pattern
dependencies on changes and faults. Empirical Software Engineering 21, 3 (2016).

[16] Werner Janjic, Oliver Hummel, and Colin Atkinson. 2010. More archetypal usage
scenarios for software search engines. In Proceedings of the ICSE Workshop on
Search-driven Development: Users, Infrastructure, Tools and Evaluation. ACM.

[17] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. 2013.
An unabridged source code dataset for research in software reuse. In Proceedings
of the 10th Working Conference on Mining Software Repositories. IEEE Press.

[18] Capers Jones. 1994. Software metrics: good, bad and missing. Computer 27, 9
(1994), 98–100.

[19] Kamaljit Kaur, Kirti Minhas, Neha Mehan, and Namita Kakkar. 2009. Static and
dynamic complexity analysis of software metrics. World Academy of Science,
Engineering and Technology 56 (2009).

[20] Foutse Khomh and Yann-Gael Gueheneuce. 2008. Do design patterns impact
software quality positively?. In Software Maintenance and Reengineering, 12th
European Conference on. IEEE.

[21] Panagiotis Louridas. 2006. Static code analysis. IEEE Software 23, 4 (2006), 58–61.
[22] Bertrand Meyer. 1988. Object-oriented software construction. Vol. 2. Prentice Hall.
[23] Nicole Rauch, Eberhard Kuhn, and Holger Friedrich. 2008. Index-based process

and software quality control in agile development projects. In Proceedings of
CompArch.

[24] Linda Rising. 2000. The pattern almanac. Addison-Wesley.
[25] Martin P Robillard, Walid Maalej, Robert J Walker, and Thomas Zimmermann.

2014. Recommendation systems in software engineering. Springer Science &
Business.

[26] N Rutar, Christian B Almazan, and Jeffrey S Foster. 2004. A comparison of bug
finding tools for Java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on. IEEE.

[27] Nick Rutar, Christian B Almazan, and Jeffrey S Foster. 2004. A comparison of
bug finding tools for Java. In Software Reliability Engineering, 15th International
Symposium on. IEEE.

[28] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris.
2002. Code quality analysis in open source software development. Information
Systems Journal 12, 1 (2002).

[29] SS Suresh, MM Naidu, S Asha Kiran, and P Tathawade. 2011. Design pattern
recommendation system: a methodology, data model and algorithms. ICCTAI
(2011).

[30] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move
method refactoring opportunities. IEEE Transactions on Software Engineering 35,
3 (2009).

[31] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spy-
ros T Halkidis. 2006. Design pattern detection using similarity scoring. IEEE
transactions on software engineering 32, 11 (2006).

14

	Abstract
	1 Introduction
	2 State of the Art
	2.1 Software Quality and Refactoring
	2.2 Design Patterns

	3 Foundations
	3.1 Strategy Pattern as Running Example
	3.2 PMD

	4 Approach
	4.1 Detection Rule Derivation
	4.2 Threshold Derivation
	4.3 Prototypical Implementation

	5 Evaluation Results
	5.1 Discussion
	5.2 Limitations

	6 Ongoing and Future Work
	7 Conclusion
	A Appendix
	References

